




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷琼结县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 lgx,lgy,lgz成等差数列是由y2=zx成立的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件2 已知向量=(2,3,5)与向量=(3,)平行,则=( )ABCD3 已知函数,函数满足以下三点条件:定义域为;对任意,有;当时,.则函数在区间上零点的个数为( )A7 B6 C5 D4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.4 直线l平面,直线m平面,命题p:“若直线m,则ml”的逆命题、否命题、逆否命题中真命题的个数为( )A0B1C2D35 函数f(x)=3x+x3的零点所在的区间是( )A(0,1)B(1,2)C(2.3)D(3,4)6 执行如图所示的程序框图,输出的结果是()A15 B21 C24 D357 已知集合(其中为虚数单位),则( )A B C D8 双曲线E与椭圆C:1有相同焦点,且以E的一个焦点为圆心与双曲线的渐近线相切的圆的面积为,则E的方程为( )A.1 B.1C.y21 D.19 对于函数f(x),若a,b,cR,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是( )ACD10 如果命题pq是真命题,命题p是假命题,那么( )A命题p一定是假命题B命题q一定是假命题C命题q一定是真命题D命题q是真命题或假命题11函数有两个不同的零点,则实数的取值范围是( )A B C D12“方程+=1表示椭圆”是“3m5”的( )条件A必要不充分B充要C充分不必要D不充分不必要二、填空题13(2)7的展开式中,x2的系数是14调查某公司的四名推销员,其工作年限与年推销金额如表 推销员编号1234工作年限x/(年)351014年推销金额y/(万元)23712由表中数据算出线性回归方程为=x+若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为万元15在ABC中,已知=2,b=2a,那么cosB的值是16已知ABC中,内角A,B,C的对边分别为a,b,c,asinA=bsinB+(cb)sinC,且bc=4,则ABC的面积为17以抛物线y2=20x的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为18【2017-2018第一学期东台安丰中学高三第一次月考】函数的单调递增区间为_三、解答题19已知函数f(x)=x3+x(1)判断函数f(x)的奇偶性,并证明你的结论;(2)求证:f(x)是R上的增函数;(3)若f(m+1)+f(2m3)0,求m的取值范围(参考公式:a3b3=(ab)(a2+ab+b2)20已知f(x)=|x|+x|()关于x的不等式f(x)a23a恒成立,求实数a的取值范围;()若f(m)+f(n)=4,且mn,求m+n的取值范围 21如图,过抛物线C:x2=2py(p0)的焦点F的直线交C于M(x1,y1),N(x2,y2)两点,且x1x2=4()p的值;()R,Q是C上的两动点,R,Q的纵坐标之和为1,RQ的垂直平分线交y轴于点T,求MNT的面积的最小值22在锐角ABC中,角A、B、C的对边分别为a、b、c,且()求角B的大小;()若b=6,a+c=8,求ABC的面积23已知函数f(x)=,其中=(2cosx, sin2x),=(cosx,1),xR(1)求函数y=f(x)的单调递增区间;(2)在ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=,且sinB=2sinC,求ABC的面积24已知椭圆C的中心在坐标原点O,长轴在x轴上,离心率为,且椭圆C上一点到两个焦点的距离之和为4()椭圆C的标准方程()已知P、Q是椭圆C上的两点,若OPOQ,求证:为定值()当为()所求定值时,试探究OPOQ是否成立?并说明理由 琼结县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:lgx,lgy,lgz成等差数列,2lgy=lgxlgz,即y2=zx,充分性成立,因为y2=zx,但是x,z可能同时为负数,所以必要性不成立,故选:A【点评】本题主要考查了等差数列和函数的基本性质,以及充分必要行得证明,是高考的常考类型,同学们要加强练习,属于基础题2 【答案】C【解析】解:向量=(2,3,5)与向量=(3,)平行,=,=故选:C【点评】本题考查了空间向量平行(共线)的问题,解题时根据两向量平行,对应坐标成比例,即可得出答案3 【答案】D第卷(共100分)Com4 【答案】B【解析】解:直线l平面,直线m平面,命题p:“若直线m,则ml”,命题P是真命题,命题P的逆否命题是真命题;P:“若直线m不垂直于,则m不垂直于l”,P是假命题,命题p的逆命题和否命题都是假命题故选:B5 【答案】A【解析】解:f(0)=20,f(1)=10,由零点存在性定理可知函数f(x)=3x+x3的零点所在的区间是(0,1)故选A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题6 【答案】C【解析】【知识点】算法和程序框图【试题解析】否,否,否,是,则输出S=24故答案为:C7 【答案】D【解析】考点:1.复数的相关概念;2.集合的运算8 【答案】【解析】选C.可设双曲线E的方程为1,渐近线方程为yx,即bxay0,由题意得E的一个焦点坐标为(,0),圆的半径为1,焦点到渐近线的距离为1.即1,又a2b26,b1,a,E的方程为y21,故选C.9 【答案】D【解析】解:由题意可得f(a)+f(b)f(c)对于a,b,cR都恒成立,由于f(x)=1+,当t1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满足条件当t10,f(x)在R上是减函数,1f(a)1+t1=t,同理1f(b)t,1f(c)t,由f(a)+f(b)f(c),可得 2t,解得1t2当t10,f(x)在R上是增函数,tf(a)1,同理tf(b)1,tf(c)1,由f(a)+f(b)f(c),可得 2t1,解得1t综上可得,t2,故实数t的取值范围是,2,故选D【点评】本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题10【答案】D【解析】解:命题“p或q”真命题,则命题p与命题q中至少有一个命题为真命题,又命题“非p”也是假命题,命题p为真命题故命题q为可真可假故选D【点评】本题考查的知识点是命题的真假判断与应用,其中熟练掌握复合命题真值表是解答本题的关键11【答案】B【解析】试题分析:函数有两个零点等价于与的图象有两个交点,当时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B. (1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程零点个数的常用方法:直接法:可利用判别式的正负直接判定一元二次方程根的个数;转化法:函数零点个数就是方程根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;数形结合法:一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题.本题的解答就利用了方法.12【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即3m5且m1,此时3m5成立,即充分性成立,当m=1时,满足3m5,但此时方程+=1即为x2+y2=4为圆,不是椭圆,不满足条件即必要性不成立故“方程+=1表示椭圆”是“3m5”的充分不必要条件故选:C【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题二、填空题13【答案】280 解:(2)7的展开式的通项为=由,得r=3x2的系数是故答案为:28014【答案】 【解析】解:由条件可知=(3+5+10+14)=8, =(2+3+7+12)=6,代入回归方程,可得a=,所以=x,当x=8时,y=,估计他的年推销金额为万元故答案为:【点评】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题15【答案】 【解析】解: =2,由正弦定理可得:,即c=2ab=2a,=cosB=故答案为:【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题16【答案】 【解析】解:asinA=bsinB+(cb)sinC,由正弦定理得a2=b2+c2bc,即:b2+c2a2=bc,由余弦定理可得b2=a2+c22accosB,cosA=,A=60可得:sinA=,bc=4,SABC=bcsinA=故答案为:【点评】本题主要考查了解三角形问题考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题17【答案】(x5)2+y2=9 【解析】解:抛物线y2=20x的焦点坐标为(5,0),双曲线:的两条渐近线方程为3x4y=0由题意,r=3,则所求方程为(x5)2+y2=9故答案为:(x5)2+y2=9【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于基础题18【答案】【解析】三、解答题19【答案】 【解析】解:(1)f(x)是R上的奇函数证明:f(x)=x3x=(x3+x)=f(x),f(x)是R上的奇函数(2)设R上任意实数x1、x2满足x1x2,x1x20,f(x1)f(x2)=(x1x2)+(x1)3(x2)3=(x1x2)(x1)2+(x2)2+x1x2+1=(x1x2)(x1+x2)2+x22+10恒成立,因此得到函数f(x)是R上的增函数(3)f(m+1)+f(2m3)0,可化为f(m+1)f(2m3),f(x)是R上的奇函数,f(2m3)=f(32m),不等式进一步可化为f(m+1)f(32m),函数f(x)是R上的增函数,m+132m,20【答案】 【解析】解:()关于x的不等式f(x)a23a恒成立,即|x|+x|a23a恒成立由于f(x)=|x|+x|=,故f(x)的最小值为2,2a23a,求得1a2()由于f(x)的最大值为2,f(m)2,f(n)2,若f(m)+f(n)=4,mn,m+n5【点评】本题主要考查分段函数的应用,求函数的最值,函数的恒成立问题,属于中档题21【答案】 【解析】解:()由题意设MN:y=kx+,由,消去y得,x22pkxp2=0(*)由题设,x1,x2是方程(*)的两实根,故p=2;()设R(x3,y3),Q(x4,y4),T(0,t),T在RQ的垂直平分线上,|TR|=|TQ|得,又,即4(y3y4)=(y3+y42t)(y4y3)而y3y4,4=y3+y42t又y3+y4=1,故T(0,)因此,由()得,x1+x2=4k,x1x2=4,=因此,当k=0时,SMNT有最小值3【点评】本题考查抛物线方程的求法,考查了直线和圆锥曲线间的关系,着重考查“舍而不求”的解题思想方法,考查了计算能力,是中档题22【答案】 【解析】解:()由2bsinA=a,以及正弦定理,得sinB=,又B为锐角,B=,()由余弦定理b2=a2+c22accosB,a2+c2ac=36,a+c=8,ac=,SABC=23【答案】 【解析】解:(1)f(x)=2cos2x+sin2x=sin2x+cos2x+1=2sin(2x+)+1,令+2k2x+2k,解得+kx+k,函数y=f(x)的单调递增区间是+k, +k,()f(A)=22sin(2A+)+1=2,即sin(2A+)= 又0A,A=a=,由余弦定理得a2=b2+c22bccosA=(b+c)23bc=7 sinB=2sinCb=2c 由得c2=SABC=24【答案】 【解析】(I)解:由题意可设椭圆的坐标方程为(ab0)离心率为,且椭圆C上一点到两个焦点的距离之和为4,2a=4,解得a=2,c=1b2=a2c2=3椭圆C的标准方程为(II)证明:当OP与OQ的斜率都存在时,设直线OP的方程为y=kx(k0),则直线OQ的方程为y=x(k0),P(x,y)联立,化为,|OP|2=x2+y2=,同理可得|OQ|2=,=+=为定值当直线OP或OQ的斜率一个为0而另一个不存在时,上式也成立因此=为定值(III)当=定值时,试探究OPOQ是否成立?并说明理由O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025海南临高县公安局招聘警务辅助人员(第2号)模拟试卷及答案详解(各地真题)
- 2025江苏南京市玄武区人民政府玄武门街道办事处招聘编外人员5人考前自测高频考点模拟试题及完整答案详解一套
- 2025年长河镇人民政府公开招聘编外工作人员3人考前自测高频考点模拟试题及答案详解1套
- 2025年商丘民权县消防救援大队招聘政府专职消防员32名模拟试卷及参考答案详解一套
- 2025南平市人民医院煎药员招聘(编外聘用)模拟试卷完整参考答案详解
- 2025广东龙川县财政投资评审中心招聘编外人员1人考前自测高频考点模拟试题及答案详解(夺冠系列)
- 2025年马鞍山和县公开引进高中教师12人模拟试卷附答案详解
- 2025辽宁盘锦市盘山县坝墙子镇幼儿园园长招聘1人模拟试卷及答案详解(易错题)
- 2025河南中豫建设投资集团股份有限公司招聘1人模拟试卷及答案详解(全优)
- 2025年春季中国邮政储蓄银行宁波分行校园招聘考前自测高频考点模拟试题附答案详解(黄金题型)
- 水生产处理工三级安全教育(班组级)考核试卷及答案
- 2025至2030中国魔芋行业项目调研及市场前景预测评估报告
- 2024新译林版英语八年级上Unit 3 To be a good learner单词表(开学版)
- DGTJ08-2310-2019 外墙外保温系统修复技术标准
- 软件开发分包管理措施
- 冬季四防培训课件
- 建筑公司研发管理制度
- Python编程基础(第3版)(微课版)-教学大纲
- 2024北森图形推理题
- 第三节集装箱吊具一集装箱简易吊具二集装箱专用吊具课件
- 她力量自有光课件-高二下学期三八妇女节主题班会
评论
0/150
提交评论