乳山市三中2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
乳山市三中2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
乳山市三中2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
乳山市三中2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
乳山市三中2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

乳山市三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若点O和点F(2,0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为( )ABCD2 抛物线y=x2上的点到直线4x+3y8=0距离的最小值是( )ABCD33 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则的值是( )A10B11C12D13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力4 某几何体的三视图如图所示,则该几何体为( )A四棱柱 B四棱锥 C三棱台 D三棱柱 5 函数是指数函数,则的值是( )A4 B1或3 C3 D16 ,则( )A B C D7 设0a1,实数x,y满足,则y关于x的函数的图象形状大致是( )ABCD8 已知函数,若存在常数使得方程有两个不等的实根(),那么的取值范围为( )A B C D9 直线:(为参数)与圆:(为参数)的位置关系是()A相离 B相切 C相交且过圆心 D相交但不过圆心10圆锥的高扩大到原来的 倍,底面半径缩短到原来的,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的11已知函数f(x)=x4cosx+mx2+x(mR),若导函数f(x)在区间2,2上有最大值10,则导函数f(x)在区间2,2上的最小值为( )A12B10C8D612已知为的三个角所对的边,若,则( )A23 B43 C31 D32【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力二、填空题13【启东中学2018届高三上学期第一次月考(10月)】已知函数在上是增函数,函数,当时,函数g(x)的最大值M与最小值m的差为,则a的值为_.14已知(1+x+x2)(x)n(nN+)的展开式中没有常数项,且2n8,则n=15方程有两个不等实根,则的取值范围是 16若曲线f(x)=aex+bsinx(a,bR)在x=0处与直线y=1相切,则ba=17已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_(单位:)18已知实数x,y满足约束条,则z=的最小值为三、解答题19已知命题p:x22x+a0在R上恒成立,命题q:若p或q为真,p且q为假,求实数a的取值范围20已知ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求ABC的面积21已知函数f(x)=lnxaxb(a,bR)()若函数f(x)在x=1处取得极值1,求a,b的值()讨论函数f(x)在区间(1,+)上的单调性()对于函数f(x)图象上任意两点A(x1,y1),B(x2,y2)(x1x2),不等式f(x0)k恒成立,其中k为直线AB的斜率,x0=x1+(1)x2,01,求的取值范围 22若已知,求sinx的值23已知命题p:x2,4,x22x2a0恒成立,命题q:f(x)=x2ax+1在区间上是增函数若pq为真命题,pq为假命题,求实数a的取值范围24如图,在三棱锥 中,分别是的中点,且.(1)证明: ;(2)证明:平面 平面 .乳山市三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:因为F(2,0)是已知双曲线的左焦点,所以a2+1=4,即a2=3,所以双曲线方程为,设点P(x0,y0),则有,解得,因为,所以=x0(x0+2)+=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值=,故的取值范围是,故选B【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力2 【答案】A【解析】解:由,得3x24x+8=0=(4)2438=800所以直线4x+3y8=0与抛物线y=x2无交点设与直线4x+3y8=0平行的直线为4x+3y+m=0联立,得3x24xm=0由=(4)243(m)=16+12m=0,得m=所以与直线4x+3y8=0平行且与抛物线y=x2相切的直线方程为4x+3y=0所以抛物线y=x2上的一点到直线4x+3y8=0的距离的最小值是=故选:A【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题3 【答案】C【解析】由题意,得甲组中,解得乙组中,所以,所以,故选C4 【答案】【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A.考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹.5 【答案】C【解析】考点:指数函数的概念6 【答案】A【解析】试题分析:,由于为增函数,所以.应为为增函数,所以,故.考点:比较大小7 【答案】A【解析】解:0a1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+)上单调递增,且函数的图象经过点(0,1),故选:A【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题8 【答案】C【解析】试题分析:由图可知存在常数,使得方程有两上不等的实根,则,由,可得,由,可得(负舍),即有,即,则.故本题答案选C.考点:数形结合【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象. 9 【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2圆心到直线的距离为:,所以直线与圆相交。又圆心不在直线上,所以直线不过圆心。故答案为:D10【答案】A【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为,将圆锥的高扩大到原来的倍,底面半径缩短到原来的,则体积为,所以,故选A.考点:圆锥的体积公式.111【答案】C【解析】解:由已知得f(x)=4x3cosxx4sinx+2mx+1,令g(x)=4x3cosxx4sinx+2mx是奇函数,由f(x)的最大值为10知:g(x)的最大值为9,最小值为9,从而f(x)的最小值为9+1=8故选C【点评】本题考查了导数的计算、奇函数的最值的性质属于常规题,难度不大12【答案】C【解析】由已知等式,得,由正弦定理,得,则,所以,故选C二、填空题13【答案】【解析】,因为在上是增函数,即在上恒成立,则,当时,又,令,则,(1)当时,则,则,(2)当时,则,舍。14【答案】5【解析】二项式定理【专题】计算题【分析】要想使已知展开式中没有常数项,需(x)n(nN+)的展开式中无常数项、x1项、x2项,利用(x)n(nN+)的通项公式讨论即可【解答】解:设(x)n(nN+)的展开式的通项为Tr+1,则Tr+1=xnrx3r=xn4r,2n8,当n=2时,若r=0,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;当n=3时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n3;当n=4时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(nN+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n6;当n=7时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n7;当n=8时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;综上所述,n=5时,满足题意故答案为:5【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题15【答案】【解析】试题分析:作出函数和的图象,如图所示,函数的图象是一个半圆,直线的图象恒过定点,结合图象,可知,当过点时,当直线与圆相切时,即,解得,所以实数的取值范围是.111考点:直线与圆的位置关系的应用【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键.16【答案】2 【解析】解:f(x)=aex+bsinx的导数为f(x)=aex+bcosx,可得曲线y=f(x)在x=0处的切线的斜率为k=ae0+bcos0=a+b,由x=0处与直线y=1相切,可得a+b=0,且ae0+bsin0=a=1,解得a=1,b=1,则ba=2故答案为:217【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】该几何体是半个圆柱。所以故答案为:18【答案】 【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=32x+y,设t=2x+y,则y=2x+t,平移直线y=2x+t,由图象可知当直线y=2x+t经过点B时,直线y=2x+t的截距最小,此时t最小由,解得,即B(3,3),代入t=2x+y得t=2(3)+3=3t最小为3,z有最小值为z=33=故答案为:【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法三、解答题19【答案】 【解析】解:若P是真命题则=44a0a1; (3分)若q为真命题,则方程x2+2ax+2a=0有实根,=4a24(2a)0,即,a1或a2,(6分)依题意得,当p真q假时,得a; (8分)当p假q真时,得a2(10分)综上所述:a的取值范围为a2(12分)【点评】本题考查复合函数的真假与构成其简单命题的真假的关系,解决此类问题应该先求出简单命题为真时参数的范围,属于基础题20【答案】 【解析】解:由题意设a=n、b=n+1、c=n+2(nN+),最大角是最小角的2倍,C=2A,由正弦定理得,则,得cosA=,由余弦定理得,cosA=,=,化简得,n=4,a=4、b=5、c=6,cosA=,又0A,sinA=,ABC的面积S=【点评】本题考查正弦定理和余弦定理,边角关系,三角形的面积公式的综合应用,以及方程思想,考查化简、计算能力,属于中档题21【答案】 【解析】解:()f(x)的导数为f(x)=a,由题意可得f(1)=0,且f(1)=1,即为1a=0,且ab=1,解得a=1b=2,经检验符合题意故a=1,b=2;()由()可得f(x)=a,x1,01,若a0,f(x)0,f(x)在(1,+)递增;0a1,x(1,),f(x)0,x(,+),f(x)0;a1,f(x)0f(x)在(1,+)递减综上可得,a0,f(x)在(1,+)递增;0a1,f(x)在(1,)递增,在(,+)递减;a1,f(x)在(1,+)递减()f(x0)=a=a,直线AB的斜率为k=a,f(x0)k,即x2x1ln x1+(1)x2,即为1ln +(1),令t=1,t1lnt+(1)t,即t1tlnt+(tlntlnt)0恒成立,令函数g(t)=t1tlnt+(tlntlnt),t1,当0时,g(t)=lnt+(lnt+1)=,令(t)=tlnt+(tlnt+t1),t1,(t)=1lnt+(2+lnt)=(1)lnt+21,当0时,(t)0,(t)在(1,+)递减,则(t)(1)=0,故当t1时,g(t)0,则g(t)在(1,+)递减,g(t)g(1)=0符合题意;当1时,(t)=(1)lnt+210,解得1t,当t(1,),(t)0,(t)在(1,)递增,(t)(1)=0;当t(1,),g(t)0,g(t)在(1,)递增,g(t)g(1)=0,则有当t(1,),g(t)0不合题意即有0【点评】本题考查导数的运用:求单调区间和极值、最值,同时考查函数的单调性的运用,不等式恒成立思想的运用,运用分类讨论的思想方法是解题的关键 22【答案】 【解析】解:,2,sin()=sinx=sin(x+)=sin()cos

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论