




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷璧山区二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 设集合M=(x,y)|x2+y2=1,xR,yR,N=(x,y)|x2y=0,xR,yR,则集合MN中元素的个数为( )A1B2C3D42 对一切实数x,不等式x2+a|x|+10恒成立,则实数a的取值范围是( )A(,2)BD上是减函数,那么b+c( )A有最大值B有最大值C有最小值D有最小值3 如图是一个多面体的三视图,则其全面积为( )ABCD4 如图,正方体ABCDA1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是( )AACBEBEF平面ABCDC三棱锥ABEF的体积为定值D异面直线AE,BF所成的角为定值5 ABC的内角A、B、C的对边分别为a、b、c已知a=,c=2,cosA=,则b=( )ABC2D36 已知正ABC的边长为a,那么ABC的平面直观图ABC的面积为( )ABCD7 某几何体的三视图如图所示,则该几何体的体积为( )ABCD【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力8 已知某运动物体的位移随时间变化的函数关系为,设物体第n秒内的位移为an,则数列an是( )A公差为a的等差数列B公差为a的等差数列C公比为a的等比数列D公比为的等比数列9 在ABC中,a2=b2+c2+bc,则A等于( )A120B60C45D3010在空间中,下列命题正确的是( )A如果直线m平面,直线n内,那么mnB如果平面内的两条直线都平行于平面,那么平面平面C如果平面外的一条直线m垂直于平面内的两条相交直线,那么mD如果平面平面,任取直线m,那么必有m11已知复数z满足zi=2i,i为虚数单位,则z=( )A12iB1+2iC12iD1+2i12已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A =1.23x+4B =1.23x0.08C =1.23x+0.8D =1.23x+0.08二、填空题13如图所示,正方体ABCDABCD的棱长为1,E、F分别是棱AA,CC的中点,过直线EF的平面分别与棱BB、DD交于M、N,设BM=x,x0,1,给出以下四个命题:平面MENF平面BDDB;当且仅当x=时,四边形MENF的面积最小;四边形MENF周长l=f(x),x0,1是单调函数;四棱锥CMENF的体积v=h(x)为常函数;以上命题中真命题的序号为14设函数,其中x表示不超过x的最大整数若方程f(x)=ax有三个不同的实数根,则实数a的取值范围是15定义在上的函数满足:,则不等式(其中为自然对数的底数)的解集为 .16在中,已知角的对边分别为,且,则角为 .17若全集,集合,则 。18已知各项都不相等的等差数列,满足,且,则数列项中的最大值为_.三、解答题19在极坐标系中,圆C的极坐标方程为:2=4(cos+sin)6若以极点O为原点,极轴所在直线为x轴建立平面直角坐标系()求圆C的参数方程;()在直角坐标系中,点P(x,y)是圆C上动点,试求x+y的最大值,并求出此时点P的直角坐标 20已知命题p:x23x+20;命题q:0xa若p是q的必要而不充分条件,求实数a的取值范围21已知函数f(x)=log2(x3),(1)求f(51)f(6)的值;(2)若f(x)0,求x的取值范围22某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如表:推销员编号12345工作年限x/年35679推销金额y/万元23345(1)以工作年限为自变量x,推销金额为因变量y,作出散点图;(2)求年推销金额y关于工作年限x的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额 23已知a0,a1,命题p:“函数f(x)=ax在(0,+)上单调递减”,命题q:“关于x的不等式x22ax+0对一切的xR恒成立”,若pq为假命题,pq为真命题,求实数a的取值范围24(本小题满分12分)ABC的三内角A,B,C的对边分别为a,b,c,已知ksin Bsin Asin C(k为正常数),a4c.(1)当k时,求cos B;(2)若ABC面积为,B60,求k的值璧山区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:根据题意,MN=(x,y)|x2+y2=1,xR,yR(x,y)|x2y=0,xR,yR(x,y)|将x2y=0代入x2+y2=1,得y2+y1=0,=50,所以方程组有两组解,因此集合MN中元素的个数为2个,故选B【点评】本题既是交集运算,又是函数图形求交点个数问题2 【答案】B【解析】解:由f(x)在上是减函数,知f(x)=3x2+2bx+c0,x,则15+2b+2c0b+c故选B3 【答案】C【解析】解:由三视图可知几何体是一个正三棱柱,底面是一个边长是的等边三角形,侧棱长是,三棱柱的面积是32=6+,故选C【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小4 【答案】 D【解析】解:在正方体中,ACBD,AC平面B1D1DB,BE平面B1D1DB,ACBE,故A正确;平面ABCD平面A1B1C1D1,EF平面A1B1C1D1,EF平面ABCD,故B正确;EF=,BEF的面积为定值EF1=,又AC平面BDD1B1,AO为棱锥ABEF的高,三棱锥ABEF的体积为定值,故C正确;利用图形设异面直线所成的角为,当E与D1重合时sin=,=30;当F与B1重合时tan=,异面直线AE、BF所成的角不是定值,故D错误;故选D5 【答案】D【解析】解:a=,c=2,cosA=,由余弦定理可得:cosA=,整理可得:3b28b3=0,解得:b=3或(舍去)故选:D6 【答案】D【解析】解:正ABC的边长为a,正ABC的高为,画到平面直观图ABC后,“高”变成原来的一半,且与底面夹角45度,ABC的高为=,ABC的面积S=故选D【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化7 【答案】D【解析】由三视图知几何体为一个底面半径为2高为4的半圆柱中挖去一个以轴截面为底面高为2的四棱锥,因此该几何体的体积为,故选D8 【答案】A【解析】解:,an=S(n)s(n1)=anan1=a数列an是以a为公差的等差数列故选A【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用9 【答案】A【解析】解:根据余弦定理可知cosA=a2=b2+bc+c2,bc=(b2+c2a2)cosA=A=120故选A10【答案】 C【解析】解:对于A,直线m平面,直线n内,则m与n可能平行,可能异面,故不正确;对于B,如果平面内的两条相交直线都平行于平面,那么平面平面,故不正确;对于C,根据线面垂直的判定定理可得正确;对于D,如果平面平面,任取直线m,那么可能m,也可能m和斜交,;故选:C【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题11【答案】A【解析】解:由zi=2i得,故选A12【答案】D【解析】解:设回归直线方程为=1.23x+a样本点的中心为(4,5),5=1.234+aa=0.08回归直线方程为=1.23x+0.08故选D【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题二、填空题13【答案】 【解析】解:连结BD,BD,则由正方体的性质可知,EF平面BDDB,所以平面MENF平面BDDB,所以正确连结MN,因为EF平面BDDB,所以EFMN,四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF的面积最小所以正确因为EFMN,所以四边形MENF是菱形当x0,时,EM的长度由大变小当x,1时,EM的长度由小变大所以函数L=f(x)不单调所以错误连结CE,CM,CN,则四棱锥则分割为两个小三棱锥,它们以CEF为底,以M,N分别为顶点的两个小棱锥因为三角形CEF的面积是个常数M,N到平面CEF的距离是个常数,所以四棱锥CMENF的体积V=h(x)为常函数,所以正确故答案为:【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高14【答案】(1,) 【解析】解:当2x1时,x=2,此时f(x)=xx=x+2当1x0时,x=1,此时f(x)=xx=x+1当0x1时,1x10,此时f(x)=f(x1)=x1+1=x当1x2时,0x11,此时f(x)=f(x1)=x1当2x3时,1x12,此时f(x)=f(x1)=x11=x2当3x4时,2x13,此时f(x)=f(x1)=x12=x3设g(x)=ax,则g(x)过定点(0,0),坐标系中作出函数y=f(x)和g(x)的图象如图:当g(x)经过点A(2,1),D(4,1)时有3个不同的交点,当经过点B(1,1),C(3,1)时,有2个不同的交点,则OA的斜率k=,OB的斜率k=1,OC的斜率k=,OD的斜率k=,故满足条件的斜率k的取值范围是或,故答案为:(1,)【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想15【答案】【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得,结合要求的不等式可知在不等式两边同时乘以,即,因此构造函数,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令也可以求解.116【答案】【解析】考点:正弦定理【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是,消去多余的变量,从而解出角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在年全国卷( )中以选择题的压轴题出现.17【答案】|01【解析】,|01。18【答案】【解析】考点:1.等差数列的通项公式;2.等差数列的前项和【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公式在解题中起到变量代换作用,而是等差数列的两个基本量,用它们表示已知和未知是常用方法.三、解答题19【答案】 【解析】(本小题满分10分)选修44:坐标系与参数方程解:()因为2=4(cos+sin)6,所以x2+y2=4x+4y6,所以x2+y24x4y+6=0,即(x2)2+(y2)2=2为圆C的普通方程所以所求的圆C的参数方程为(为参数)()由()可得,当时,即点P的直角坐标为(3,3)时,x+y取到最大值为6 20【答案】 【解析】解:对于命题p:x23x+20,解得:x2或x1,命题p:x2或x1,又命题q:0xa,且p是q的必要而不充分条件,当a0时,q:x,符合题意;当a0时,要使p是q的必要而不充分条件,需x|0xax|x2或x1,0a1综上,取并集可得a(,1【点评】本题考查必要条件、充分条件与充要条件的判断方法,考查了一元二次不等式的解法,是基础题21【答案】 【解析】解:(1)函数f(x)=log2(x3),f(51)f(6)=log248log23=log216=4;(2)若f(x)0,则0x31,解得:x(3,4【点评】本题考查的知识点是对数函数的图象和性质,对数的运算性质,解答时要时时注意真数大于0,以免出错22【答案】 【解析】解:(1)依题意,画出散点图如图所示,(2)从散点图可以看出,这些点大致在一条直线附近,设所求的线性回归方程为则,年推销金额y关于工作年限x的线性回归方程为=0.5x+0.4(3)由(2)可知,当x=11时, =0.5x+0.4=0.511+0.4=5.9(万元)可以估计第6名推销员的年推销金额为5.9万元 23【答案】 【解析】解:若p为真,则0a1;若q为真,则=4a210,得,又a0,a1,因为pq为假命题,pq为真命题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仓库团队拜年活动方案
- 仓鼠室内游戏活动方案
- 代写综合实践活动方案
- 代理客户感恩节活动方案
- 代言人合影活动策划方案
- 以物换物活动方案
- 仪征促销活动策划方案
- 任丘喷雾推销活动方案
- 2024年贵州省高考地理真题试卷(含答案)
- 庆阳市第一中学2025届高三三模数学(解析)
- 2025届湖北省武汉市高三五月模拟训练物理(含答案)
- 外墙脚手架悬挑专项施工方案
- 2025至2030年中国鸡胸行业投资前景及策略咨询报告
- 煤矿重大危险源评估
- 生物+昆一中2025届高三联考试卷及答案(九)
- 神奇校车 测试题及答案
- 家政考试题及答案大全
- 成品检验培训课件
- 《政策性金融工具》课件
- 重度贫血护理疑难病例讨论
- 2025年人教版新教材数学一年级下册期末复习计划
评论
0/150
提交评论