谢家集区二中2018-2019学年上学期高二数学12月月考试题含解析_第1页
谢家集区二中2018-2019学年上学期高二数学12月月考试题含解析_第2页
谢家集区二中2018-2019学年上学期高二数学12月月考试题含解析_第3页
谢家集区二中2018-2019学年上学期高二数学12月月考试题含解析_第4页
谢家集区二中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷谢家集区二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 以的焦点为顶点,顶点为焦点的椭圆方程为( )ABCD 2 已知ABC的周长为20,且顶点B (0,4),C (0,4),则顶点A的轨迹方程是( )A(x0) B(x0)C(x0) D(x0)3 函数的定义域为( )Ax|1x4Bx|1x4,且x2Cx|1x4,且x2Dx|x44 已知全集I=1,2,3,4,5,6,A=1,2,3,4,B=3,4,5,6,那么I(AB)等于( )A3,4B1,2,5,6C1,2,3,4,5,6D5 下列计算正确的是( )A、 B、 C、 D、6 “x24x0”的一个充分不必要条件为( )A0x4B0x2Cx0Dx47 已知函数f(x)=lg(1x)的值域为(,1,则函数f(x)的定义域为( )A9,+)B0,+)C(9,1)D9,1)8 执行如图所示的程序框图,若输出的结果是,则循环体的判断框内处应填( )A11?B12?C13?D14?9 命题“xR,使得x21”的否定是( )AxR,都有x21 BxR,使得x21CxR,使得x21DxR,都有x1或x110某几何体的三视图如图所示,则该几何体为( )A四棱柱 B四棱锥 C三棱台 D三棱柱 11已知命题p:对任意xR,总有3x0;命题q:“x2”是“x4”的充分不必要条件,则下列命题为真命题的是( )ApqBpqCpqDpq12已知抛物线与双曲线的一个交点为M,F为抛物线的焦点,若,则该双曲线的渐近线方程为 A、 B、 C、 D、二、填空题13如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率是14当a0,a1时,函数f(x)=loga(x1)+1的图象恒过定点A,若点A在直线mxy+n=0上,则4m+2n的最小值是15方程22x1=的解x=16将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a,第二次朝上一面的点数为b,则函数y=ax22bx+1在(,2上为减函数的概率是17已知双曲线的标准方程为,则该双曲线的焦点坐标为,渐近线方程为18在中,已知,则此三角形的最大内角的度数等于_.三、解答题19已知函数f(x)=lnxax+(aR)()当a=1时,求曲线y=f(x)在点(1,f(1)处的切线方程;()若函数y=f(x)在定义域内存在两个极值点,求a的取值范围20如图,在RtABC中,ACB=,AC=3,BC=2,P是ABC内一点(1)若P是等腰三角形PBC的直角顶角,求PA的长;(2)若BPC=,设PCB=,求PBC的面积S()的解析式,并求S()的最大值21设函数f(x)=lnxax+1()当a=1时,求曲线f(x)在x=1处的切线方程;()当a=时,求函数f(x)的单调区间;()在()的条件下,设函数g(x)=x22bx,若对于x11,2,x20,1,使f(x1)g(x2)成立,求实数b的取值范围22已知等比数列an中,a1=,公比q=()Sn为an的前n项和,证明:Sn=()设bn=log3a1+log3a2+log3an,求数列bn的通项公式23如图1,圆O的半径为2,AB,CE均为该圆的直径,弦CD垂直平分半径OA,垂足为F,沿直径AB将半圆ACB所在平面折起,使两个半圆所在的平面互相垂直(如图2)()求四棱锥CFDEO的体积()如图2,在劣弧BC上是否存在一点P(异于B,C两点),使得PE平面CDO?若存在,请加以证明;若不存在,请说明理由24啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的参数方程为(t为参数),圆C的极坐标方程为p2+2psin(+)+1=r2(r0)()求直线l的普通方程和圆C的直角坐标方程;()若圆C上的点到直线l的最大距离为3,求r值 谢家集区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:双曲线的顶点为(0,2)和(0,2),焦点为(0,4)和(0,4)椭圆的焦点坐标是为(0,2)和(0,2),顶点为(0,4)和(0,4)椭圆方程为故选D【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质2 【答案】B【解析】解:ABC的周长为20,顶点B (0,4),C (0,4),BC=8,AB+AC=208=12,128点A到两个定点的距离之和等于定值,点A的轨迹是椭圆,a=6,c=4b2=20,椭圆的方程是故选B【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点3 【答案】B【解析】解:要使函数有意义,只须,即,解得1x4且x2,函数f(x)的定义域为x|1x4且x2故选B4 【答案】B【解析】解:A=1,2,3,4,B=3,4,5,6,AB=3,4,全集I=1,2,3,4,5,6,I(AB)=1,2,5,6,故选B【点评】本题考查交、并、补集的混合运算,是基础题解题时要认真审题,仔细解答,注意合理地进行等价转化5 【答案】B【解析】试题分析:根据可知,B正确。考点:指数运算。6 【答案】B【解析】解:不等式x24x0整理,得x(x4)0不等式的解集为A=x|0x4,因此,不等式x24x0成立的一个充分不必要条件,对应的x范围应该是集合A的真子集写出一个使不等式x24x0成立的充分不必要条件可以是:0x2,故选:B7 【答案】D【解析】解:函数f(x)=lg(1x)在(,1)上递减,由于函数的值域为(,1,则lg(1x)1,则有01x10,解得,9x1则定义域为9,1),故选D【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题8 【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+=的值,若输出的结果是,则最后一次执行累加的k值为12,则退出循环时的k值为13,故退出循环的条件应为:k13?,故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误9 【答案】D【解析】解:命题是特称命题,则命题的否定是xR,都有x1或x1,故选:D【点评】本题主要考查含有量词的命题的否定,比较基础10【答案】【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A.考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹.11【答案】D【解析】解:p:根据指数函数的性质可知,对任意xR,总有3x0成立,即p为真命题,q:“x2”是“x4”的必要不充分条件,即q为假命题,则pq为真命题,故选:D【点评】本题主要考查复合命题的真假关系的应用,先判定p,q的真假是解决本题的关键,比较基础12【答案】【解析】:依题意,不妨设点M在第一象限,且Mx0,y0,由抛物线定义,|MF|x0,得5x02.x03,则y24,所以M3,2,又点M在双曲线上,241,则a2,a,因此渐近线方程为5x3y0.二、填空题13【答案】 【解析】解:由题意ABE的面积是平行四边形ABCD的一半,由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题14【答案】2 【解析】解:整理函数解析式得f(x)1=loga(x1),故可知函数f(x)的图象恒过(2,1)即A(2,1),故2m+n=14m+2n2=2=2当且仅当4m=2n,即2m=n,即n=,m=时取等号4m+2n的最小值为2故答案为:215【答案】 【解析】解:22x1=22,2x1=2,解得x=,故答案为:【点评】本题考查了指数方程的解法,属于基础题16【答案】 【解析】解:由题意,函数y=ax22bx+1在(,2上为减函数满足条件第一次朝上一面的点数为a,第二次朝上一面的点数为b,a取1时,b可取2,3,4,5,6;a取2时,b可取4,5,6;a取3时,b可取6,共9种(a,b)的取值共36种情况所求概率为=故答案为:17【答案】(,0) y=2x 【解析】解:双曲线的a=2,b=4,c=2,可得焦点的坐标为(,0),渐近线方程为y=x,即为y=2x故答案为:(,0),y=2x【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题18【答案】【解析】考点:解三角形【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据,根据正弦定理,可设,即可利用余弦定理求解最大角的余弦,熟记正弦、余弦定理的公式是解答的关键三、解答题19【答案】 【解析】解:()当a=1时,f(x)=lnxx+,f(1)=1,切点为(1,1)f(x)=1=,f(1)=2,切线方程为y1=2(x1),即2x+y3=0;()f(x)的定义域是(0,+),f(x)=,若函数y=f(x)在定义域内存在两个极值点,则g(x)=ax2x+2在(0,+)2个解,故,解得:0a20【答案】 【解析】解:(1)P为等腰直角三角形PBC的直角顶点,且BC=2,PCB=,PC=,ACB=,ACP=,在PAC中,由余弦定理得:PA2=AC2+PC22ACPCcos=5,整理得:PA=;(2)在PBC中,BPC=,PCB=,PBC=,由正弦定理得: =,PB=sin,PC=sin(),PBC的面积S()=PBPCsin=sin()sin=sin(2+),(0,),则当=时,PBC面积的最大值为【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键21【答案】 【解析】解:函数f(x)的定义域为(0,+),(2分)()当a=1时,f(x)=lnxx1,f(1)=2,f(1)=0,f(x)在x=1处的切线方程为y=2(5分)()=(6分)令f(x)0,可得0x1,或x2;令f(x)0,可得1x2故当时,函数f(x)的单调递增区间为(1,2);单调递减区间为(0,1),(2,+).()当时,由()可知函数f(x)在(1,2)上为增函数,函数f(x)在1,2上的最小值为f(1)=(9分)若对于x11,2,x20,1使f(x1)g(x2)成立,等价于g(x)在0,1上的最小值不大于f(x)在(0,e上的最小值(*) (10分)又,x0,1当b0时,g(x)在0,1上为增函数,与(*)矛盾当0b1时,由及0b1得,当b1时,g(x)在0,1上为减函数,此时b1(11分)综上,b的取值范围是(12分)【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查恒成立问题,解题的关键是将对于x11,2,x20,1使f(x1)g(x2)成立,转化为g(x)在0,1上的最小值不大于f(x)在(0,e上的最小值22【答案】 【解析】证明:(I)数列an为等比数列,a1=,q=an=,Sn=又=SnSn=(II)an=bn=log3a1+log3a2+log3an=log33+(2log33)+(nlog33)=(1+2+n)=数列bn的通项公式为:bn=【点评】本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质23【答案】 【解析】解:()如图1,弦CD垂直平分半径OA,半径为2,CF=DF,OF=,在RtCOF中有COF=60,CF=DF=,CE为直径,DECD,OFDE,DE=2OF=2,图2中,平面ACB平面ADE,平面ACB平面ADE=AB,又CFAB,CF平面ACB,CF平面ADE,则CF是四棱锥CFDEO的高,()在劣弧BC上是存在一点P(劣弧BC的中点),使得PE平面CDO证明:分别连接PE,CP,OP,点P为劣弧BC弧的中点,COF=60,COP=60,则COP为等边三角形,CPAB,且,又DEAB且DE=,CPDE且CP=DE,四边形CDEP为平行四边形,PECD,又PE面CDO,CD面CDO,PE平面CDO【点评】本题以空间几何体的翻折为背景,考查空间几何体的体积,考查空间点、线、面的位置关系、线面平行及线面垂直等基础知识,考查空间想象能力,求解运算能力和推理论证能力,考查数形结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论