




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
杜集区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知函数f(x)=2ax33x2+1,若 f(x)存在唯一的零点x0,且x00,则a的取值范围是( )A(1,+)B(0,1)C(1,0)D(,1)2 在ABC中,角A,B,C所对的边分别为a,b,c,若(acosB+bcosA)=2csinC,a+b=8,且ABC的面积的最大值为4,则此时ABC的形状为( )A等腰三角形B正三角形C直角三角形D钝角三角形3 设、是两个非零向量,则“(+)2=|2+|2”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件4 若数列an的通项公式an=5()2n24()n1(nN*),an的最大项为第p项,最小项为第q项,则qp等于( )A1B2C3D45 设0ab且a+b=1,则下列四数中最大的是( )Aa2+b2B2abCaD6 双曲线的焦点与椭圆的焦点重合,则m的值等于( )A12B20CD7 执行右面的程序框图,如果输入的,则输出的属于( ) A. B. C. D.【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用8 方程表示的曲线是( )A一个圆 B 两个半圆 C两个圆 D半圆9 若关于x的方程x3x2x+a=0(aR)有三个实根x1,x2,x3,且满足x1x2x3,则a的取值范围为( )AaBa1Ca1Da110sin45sin105+sin45sin15=( )A0BCD111已知x,y满足约束条件,使z=ax+y取得最小值的最优解有无数个,则a的值为( )A3B3C1D112设集合A1,2,3,B4,5,Mx|xab,aA,bB,则M中元素的个数为()。A3B4C5D6二、填空题13设全集_.14已知tan=,tan()=,其中,均为锐角,则=15直线l过原点且平分平行四边形ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为16已知f(x)=,x0,若f1(x)=f(x),fn+1(x)=f(fn(x),nN+,则f2015(x)的表达式为17已知正方体ABCDA1B1C1D1的一个面A1B1C1D1在半径为的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCDA1B1C1D1的体积为18若函数f(x)=m在x=1处取得极值,则实数m的值是三、解答题19(本题满分14分)在中,角,所对的边分别为,已知(1)求角的大小; (2)若,求的取值范围【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力20如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M,N均在直线x=5上,圆弧C1的圆心是坐标原点O,半径为13;圆弧C2过点A(29,0)(1)求圆弧C2的方程;(2)曲线C上是否存在点P,满足?若存在,指出有几个这样的点;若不存在,请说明理由 21求同时满足下列两个条件的所有复数z:z+是实数,且1z+6;z的实部和虚部都是整数22已知双曲线C:与点P(1,2)(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由23(本小题满分12分)在多面体中,四边形与均为正方形,平面,平面,且(1)求证:平面平面;(2)求二面角的大小的余弦值 24(本小题满分12分)设f(x)x2axa2ln x(a0)(1)讨论f(x)的单调性;(2)是否存在a0,使f(x)e1,e2对于x1,e时恒成立,若存在求出a的值,若不存在说明理由杜集区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:若a=0,则函数f(x)=3x2+1,有两个零点,不满足条件若a0,函数的f(x)的导数f(x)=6ax26x=6ax(x),若 f(x)存在唯一的零点x0,且x00,若a0,由f(x)0得x或x0,此时函数单调递增,由f(x)0得0x,此时函数单调递减,故函数在x=0处取得极大值f(0)=10,在x=处取得极小值f(),若x00,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件若a0,由f(x)0得x0,此时函数递增,由f(x)0得x或x0,此时函数单调递减,即函数在x=0处取得极大值f(0)=10,在x=处取得极小值f(),若存在唯一的零点x0,且x00,则f()0,即2a()33()2+10,()21,即10,解得a1,故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键注意分类讨论2 【答案】A【解析】解:(acosB+bcosA)=2csinC,(sinAcosB+sinBcosA)=2sin2C,sinC=2sin2C,且sinC0,sinC=,a+b=8,可得:82,解得:ab16,(当且仅当a=b=4成立)ABC的面积的最大值SABC=absinC=4,a=b=4,则此时ABC的形状为等腰三角形故选:A3 【答案】C【解析】解:设a、b是两个非零向量,“(a+b)2=|a|2+|b|2”(a+b)2=|a|2+|b|2+2ab=|a|2+|b|2ab=0,即ab;abab=0即(a+b)2=|a|2+|b|2所以“(a+b)2=|a|2+|b|2”是“ab”的充要条件故选C4 【答案】A【解析】解:设=t(0,1,an=5()2n24()n1(nN*),an=5t24t=,an,当且仅当n=1时,t=1,此时an取得最大值;同理n=2时,an取得最小值qp=21=1,故选:A【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题5 【答案】A【解析】解:0ab且a+b=12b12aba=a(2b1)0,即2aba又a2+b22ab=(ab)20a2+b22ab最大的一个数为a2+b2故选A6 【答案】A【解析】解:椭圆的焦点为(4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12故选:A7 【答案】B8 【答案】A【解析】试题分析:由方程,两边平方得,即,所以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.9 【答案】B【解析】解:由x3x2x+a=0得a=x3x2x,设f(x)=x3x2x,则函数的导数f(x)=3x22x1,由f(x)0得x1或x,此时函数单调递增,由f(x)0得x1,此时函数单调递减,即函数在x=1时,取得极小值f(1)=111=1,在x=时,函数取得极大值f()=()3()2()=,要使方程x3x2x+a=0(aR)有三个实根x1,x2,x3,则1a,即a1,故选:B【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键10【答案】C【解析】解:sin45sin105+sin45sin15=cos45cos15+sin45sin15=cos(4515)=cos30=故选:C【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题11【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=ax+y,得y=ax+z,若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时a=1,即a=1若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z,此时目标函数只在C处取得最小值,不满足条件综上a=1故选:D【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键注意要对a进行分类讨论12【答案】B【解析】由题意知xab,aA,bB,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B二、填空题13【答案】7,9【解析】全集U=nN|1n10,A=1,2,3,5,8,B=1,3,5,7,9,(UA)=4,6,7,9 ,(UA)B=7,9,故答案为:7,9。14【答案】 【解析】解:tan=,均为锐角,tan()=,解得:tan=1,=故答案为:【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题15【答案】 【解析】解:直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,由斜截式可得直线l的方程为,故答案为【点评】本题考查直线的斜率公式,直线方程的斜截式16【答案】 【解析】解:由题意f1(x)=f(x)=f2(x)=f(f1(x)=,f3(x)=f(f2(x)=,fn+1(x)=f(fn(x)=,故f2015(x)=故答案为:17【答案】2 【解析】解:如图所示,连接A1C1,B1D1,相交于点O则点O为球心,OA=设正方体的边长为x,则A1O=x在RtOAA1中,由勾股定理可得: +x2=,解得x=正方体ABCDA1B1C1D1的体积V=2故答案为:218【答案】 2【解析】解:函数f(x)=m的导数为f(x)=mx2+2x,由函数f(x)=m在x=1处取得极值,即有f(1)=0,即m+2=0,解得m=2,即有f(x)=2x2+2x=2(x1)x,可得x=1处附近导数左正右负,为极大值点故答案为:2【点评】本题考查导数的运用:求极值,主要考查由极值点求参数的方法,属于基础题三、解答题19【答案】(1);(2).【解析】20【答案】 【解析】解:(1)圆弧 C1所在圆的方程为 x2+y2=169,令x=5,解得M(5,12),N(5,12)2分则直线AM的中垂线方程为 y6=2(x17),令y=0,得圆弧 C2所在圆的圆心为 (14,0),又圆弧C2 所在圆的半径为2914=15,所以圆弧C2 的方程为(x14)2+y2=225(5x29)5分(2)假设存在这样的点P(x,y),则由PA=PO,得x2+y2+2x29=0 8分由,解得x=70 (舍去) 9分由,解得 x=0(舍去),综上知,这样的点P不存在10分【点评】本题以圆为载体,考查圆的方程,考查曲线的交点,同时考查距离公式的运用,综合性强21【答案】 【解析】解:设z+=t,则 z2tz+10=01t6,=t2400,解方程得 z=i又z的实部和虚部都是整数,t=2或t=6,故满足条件的复数共4个:z=13i 或 z=3i22【答案】 【解析】解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点当直线l的斜率存在时,设直线l的方程为y2=k(x1),代入C的方程,并整理得(2k2)x2+2(k22k)xk2+4k6=0 (*)()当2k2=0,即k=时,方程(*)有一个根,l与C有一个交点所以l的方程为()当2k20,即k时=2(k22k)24(2k2)(k2+4k6)=16(32k),当=0,即32k=0,k=时,方程(*)有一个实根,l与C有一个交点所以l的方程为3x2y+1=0综上知:l的方程为x=1或或3x2y+1=0(2)假设以P为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),则2x12y12=2,2x22y22=2,两式相减得2(x1x2)(x1+x2)=(y1y2)(y1+y2)又x1+x2=2,y1+y2=4,2(x1x2)=4(y1y2)即kAB=,直线AB的方程为y2=(x1),代入双曲线方程2x2y2=2,可得,15y248y+34=0,由于判别式为482415340,则该直线AB存在 【点评】本题考查了直线和曲线的交点问题,考查直线方程问题,考查分类讨论思想,是一道中档题23【答案】【解析】【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,意在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想平面,平面平面5分24【答案】【解析】解:(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 矿山开采承包合同矿产资源开采合同履行监督协议
- 矿业并购项目法律尽职调查及法律合规性审查合同
- 智能交通科技公司股权赠与及城市交通管理合同
- 校园大学安全教育
- 生态农业发展简明招标文件编制服务协议
- 热力工程设计及施工规范方案
- 针灸学艾灸操作考试题及答案
- 校园安全教育的背景分析
- 矿业资产转让与矿山资源开发利用合同范本
- 供应链金融业务合作中双方信息保密协议
- 初中化学物质的分类
- 护士心理压力
- 小区广播系统设计方案
- 抗滑桩安全技术交底
- GB/T 5271.28-2001信息技术词汇第28部分:人工智能基本概念与专家系统
- GA/T 1678-2019法庭科学鞋底磨损特征检验技术规范
- 《数字媒体专业认知实习》课程教学大纲
- 中西方婚礼文化差异毕业论文Word版
- 预备队员考核表
- 庆阳地区地下水供水水文地质条件评价
- 储能项目竣工报告
评论
0/150
提交评论