




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
九台区高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 函数f(x)=3x+x3的零点所在的区间是( )A(0,1)B(1,2)C(2.3)D(3,4)2 观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,则a10+b10=( )A28B76C123D1993 已知函数f(x)=3cos(2x),则下列结论正确的是( )A导函数为B函数f(x)的图象关于直线对称C函数f(x)在区间(,)上是增函数D函数f(x)的图象可由函数y=3co s2x的图象向右平移个单位长度得到4 已知a为常数,则使得成立的一个充分而不必要条件是( )Aa0Ba0CaeDae5 设函数对一切实数都满足,且方程恰有6个不同的实根,则这6个实根的和为( )A. B. C. D.【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.6 已知数列an满足a1=1,a2=2,an+2=(1+cos2)an+sin2,则该数列的前10项和为( )A89B76C77D357 在数列中,则该数列中相邻两项的乘积为负数的项是( )A和 B和 C和 D和8 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P,直线PF1(F1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )ABCD9 如图,已知双曲线=1(a0,b0)的左右焦点分别为F1,F2,|F1F2|=4,P是双曲线右支上一点,直线PF2交y轴于点A,AF1P的内切圆切边PF1于点Q,若|PQ|=1,则双曲线的渐近线方程为( )Ay=xBy=3xCy=xDy=x10已知直线mxy+1=0交抛物线y=x2于A、B两点,则AOB( )A为直角三角形B为锐角三角形C为钝角三角形D前三种形状都有可能11已知函数,若存在常数使得方程有两个不等的实根(),那么的取值范围为( )A B C D12在中,则等于( )A B C或 D2二、填空题13已知平面上两点M(5,0)和N(5,0),若直线上存在点P使|PM|PN|=6,则称该直线为“单曲型直线”,下列直线中:y=x+1 y=2 y=x y=2x+1是“单曲型直线”的是14给出下列命题:存在实数,使函数是偶函数是函数的一条对称轴方程若、是第一象限的角,且,则sinsin其中正确命题的序号是15在ABC中,a,b,c分别是角A,B,C的对边,若6a=4b=3c,则cosB=16一个总体分为A,B,C三层,用分层抽样的方法从中抽取一个容量为15的样本,若B层中每个个体被抽到的概率都为,则总体的个数为17向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为18计算sin43cos13cos43sin13的值为三、解答题19某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段,进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下)()体育成绩大于或等于70分的学生常被称为“体育良好”已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;()为分析学生平时的体育活动情况,现从体育成绩在和的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率;()假设甲、乙、丙三人的体育成绩分别为,且分别在,三组中,其中当数据的方差最大时,写出的值(结论不要求证明)(注:,其中为数据的平均数)20一艘客轮在航海中遇险,发出求救信号.在遇险地点南偏西方向10海里的处有一艘海难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东,正以每小时9海里的速度向一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间;(2)若最短时间内两船在处相遇,如图,在中,求角的正弦值.21(本小题满分12分)一直线被两直线截得线段的中点是点, 当点为时, 求此直线方程.22已知数列an满足a1=a,an+1=(nN*)(1)求a2,a3,a4;(2)猜测数列an的通项公式,并用数学归纳法证明23如图所示,已知在四边形ABCD中,ADCD,AD=5,AB=7,BD=8,BCD=135(1)求BDA的大小(2)求BC的长24某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形()求出f(5);()利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式九台区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:f(0)=20,f(1)=10,由零点存在性定理可知函数f(x)=3x+x3的零点所在的区间是(0,1)故选A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题2 【答案】C【解析】解:观察可得各式的值构成数列1,3,4,7,11,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项继续写出此数列为1,3,4,7,11,18,29,47,76,123,第十项为123,即a10+b10=123,故选C3 【答案】B【解析】解:对于A,函数f(x)=3sin(2x)2=6sin(2x),A错误;对于B,当x=时,f()=3cos(2)=3取得最小值,所以函数f(x)的图象关于直线对称,B正确;对于C,当x(,)时,2x(,),函数f(x)=3cos(2x)不是单调函数,C错误;对于D,函数y=3co s2x的图象向右平移个单位长度,得到函数y=3co s2(x)=3co s(2x)的图象,这不是函数f(x)的图象,D错误故选:B【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目4 【答案】C【解析】解:由积分运算法则,得=lnx=lneln1=1因此,不等式即即a1,对应的集合是(1,+)将此范围与各个选项加以比较,只有C项对应集合(e,+)是(1,+)的子集原不等式成立的一个充分而不必要条件是ae故选:C【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题5 【答案】A.【解析】,的图象关于直线对称,个实根的和为,故选A.6 【答案】C【解析】解:因为a1=1,a2=2,所以a3=(1+cos2)a1+sin2=a1+1=2,a4=(1+cos2)a2+sin2=2a2=4一般地,当n=2k1(kN*)时,a2k+1=1+cos2a2k1+sin2=a2k1+1,即a2k+1a2k1=1所以数列a2k1是首项为1、公差为1的等差数列,因此a2k1=k当n=2k(kN*)时,a2k+2=(1+cos2)a2k+sin2=2a2k所以数列a2k是首项为2、公比为2的等比数列,因此a2k=2k该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77故选:C7 【答案】C【解析】考点:等差数列的通项公式8 【答案】D【解析】解:设F2为椭圆的右焦点由题意可得:圆与椭圆交于P,并且直线PF1(F1为椭圆的左焦点)是该圆的切线,所以点P是切点,所以PF2=c并且PF1PF2又因为F1F2=2c,所以PF1F2=30,所以根据椭圆的定义可得|PF1|+|PF2|=2a,所以|PF2|=2ac所以2ac=,所以e=故选D【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义9 【答案】D【解析】解:设内切圆与AP切于点M,与AF1切于点N,|PF1|=m,|QF1|=n,由双曲线的定义可得|PF1|PF2|=2a,即有m(n1)=2a,由切线的性质可得|AM|=|AN|,|NF1|=|QF1|=n,|MP|=|PQ|=1,|MF2|=|NF1|=n,即有m1=n,由解得a=1,由|F1F2|=4,则c=2,b=,由双曲线=1的渐近线方程为y=x,即有渐近线方程为y=x故选D【点评】本题考查双曲线的方程和性质,考查切线的性质,运用对称性和双曲线的定义是解题的关键10【答案】A【解析】解:设A(x1,x12),B(x2,x22),将直线与抛物线方程联立得,消去y得:x2mx1=0,根据韦达定理得:x1x2=1,由=(x1,x12),=(x2,x22),得到=x1x2+(x1x2)2=1+1=0,则,AOB为直角三角形故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直11【答案】C【解析】试题分析:由图可知存在常数,使得方程有两上不等的实根,则,由,可得,由,可得(负舍),即有,即,则.故本题答案选C.考点:数形结合【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象. 12【答案】C【解析】考点:余弦定理二、填空题13【答案】 【解析】解:|PM|PN|=6点P在以M、N为焦点的双曲线的右支上,即,(x0)对于,联立,消y得7x218x153=0,=(18)247(153)0,y=x+1是“单曲型直线”对于,联立,消y得x2=,y=2是“单曲型直线”对于,联立,整理得144=0,不成立不是“单曲型直线”对于,联立,消y得20x2+36x+153=0,=3624201530y=2x+1不是“单曲型直线”故符合题意的有故答案为:【点评】本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用14【答案】 【解析】解:sincos=sin2,存在实数,使错误,故错误,函数=cosx是偶函数,故正确,当时, =cos(2+)=cos=1是函数的最小值,则是函数的一条对称轴方程,故正确,当=,=,满足、是第一象限的角,且,但sin=sin,即sinsin不成立,故错误,故答案为:【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力15【答案】 【解析】解:在ABC中,6a=4b=3cb=,c=2a,由余弦定理可得cosB=故答案为:【点评】本题考查余弦定理在解三角形中的应用,用a表示b,c是解决问题的关键,属于基础题16【答案】300 【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,所以总体中的个体的个数为15=300故答案为:300【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目17【答案】 【解析】解:不等式组的可行域为:由题意,A(1,1),区域的面积为=(x3)=,由,可得可行域的面积为:1=,坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为: =故答案为:【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积18【答案】 【解析】解:sin43cos13cos43sin13=sin(4313)=sin30=,故答案为三、解答题19【答案】【解析】【知识点】样本的数据特征古典概型【试题解析】()由折线图,知样本中体育成绩大于或等于70分的学生有人,所以该校高一年级学生中,“体育良好”的学生人数大约有人()设 “至少有1人体育成绩在”为事件,记体育成绩在的数据为,体育成绩在的数据为,则从这两组数据中随机抽取2个,所有可能的结果有10种,它们是:,而事件的结果有7种,它们是:,因此事件的概率()a,b,c的值分别是为,20【答案】(1)小时;(2)【解析】试题解析:(1)设搜救艇追上客轮所需时间为小时,两船在处相遇.在中,.由余弦定理得:,所以,化简得,解得或(舍去).所以,海难搜救艇追上客轮所需时间为小时.(2)由,.在中,由正弦定理得.所以角的正弦值为.考点:三角形的实际应用【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示,再根据正弦定理和余弦定理,即可求解此类问题,其中正确画出图形是解答的关键21【答案】【解析】试题分析:设所求直线与两直线分别交于,根据因为分别在直线上,列出方程组,求解的值,即可求解直线的方程. 1考点:直线方程的求解.22【答案】 【解析】解:(1)由an+1=,可得a2=,a3=,a4=(2)猜测an=(nN*)下面用数学归纳法证明:当n=1时,左边=a1=a,右边=a,猜测成立假设当n=k(kN*)时猜测成立,即ak=则当n=k+1时,ak+1=故当n=k+1时,猜测也成立由,可知,对任意nN*都有an=成立23【答案】 【解析】(本题满分为12分)解:(1)在ABC中,AD=5,AB=7,BD=8,由余弦定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 15072.6-2025贵金属合金化学分析方法第6部分:铱含量的测定
- 2025安徽淮南高新区部分学校引进紧缺专业人才招聘39人模拟试卷及答案详解(考点梳理)
- 2025北京海淀第十九中学教师招聘模拟试卷及答案详解(必刷)
- 2025湖南湘潭市韶山思政教育实践中心公开招聘教师2人模拟试卷及一套答案详解
- 2025年铜川市为县以下医疗卫生机构定向招聘笔试模拟试卷及答案详解(网校专用)
- 2025届中国兵器装备春季校园招聘模拟试卷及答案详解(典优)
- 2025湖南开放大学高层次人才公开招聘25人模拟试卷及完整答案详解1套
- 2025贵州遵义医科大学第二附属医院第十三届贵州人才博览会引才17人考前自测高频考点模拟试题(含答案详解)
- Ifoxetine-CGP-15210G-生命科学试剂-MCE
- Human-YAP1-mRNA-生命科学试剂-MCE
- 给排水管类取样送检指南
- 真空包装机作业指导书
- 质子泵抑制剂临床使用管理办法
- 2023年上海16区高考一模英语听力合集附音频含答案含原文
- 中医医院处方笺模板
- GB/T 4170-2006塑料注射模零件技术条件
- GB/T 12363-2021锻件功能分类
- 水调歌头-公开课教学设计 省赛一等奖
- 《番茄工作法图解》课件
- 报价单模板及范文(通用十二篇)
- 蒂森克虏伯电梯MC2-C调试介绍
评论
0/150
提交评论