




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷特克斯县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 集合U=R,A=x|x2x20,B=x|y=ln(1x),则图中阴影部分表示的集合是( )Ax|x1Bx|1x2Cx|0x1Dx|x12 设k=1,2,3,4,5,则(x+2)5的展开式中xk的系数不可能是( )A10B40C50D803 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( )A1372B2024C3136D44954 函数y=2|x|的定义域为a,b,值域为1,16,当a变动时,函数b=g(a)的图象可以是( )ABCD5 若全集U=1,0,1,2,P=xZ|x22,则UP=( )A2B0,2C1,2D1,0,26 一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是( )A8cm2B12cm2C16cm2D20cm27 用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为( )Aa,b,c中至少有两个偶数Ba,b,c中至少有两个偶数或都是奇数Ca,b,c都是奇数Da,b,c都是偶数8 设x,y满足线性约束条件,若z=axy(a0)取得最大值的最优解有数多个,则实数a的值为( )A2BCD39 已知a=21.2,b=()0.8,c=2log52,则a,b,c的大小关系为( )AcbaBcabCbacDbca10在等差数列an中,a3=5,a4+a8=22,则的前20项和为( )ABCD11若,则下列不等式一定成立的是( )ABCD12函数f(x)=x22ax,x1,+)是增函数,则实数a的取值范围是( )ARB1,+)C(,1D2,+)二、填空题13设满足约束条件,则的最大值是_14若关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,则k=15已知点A(2,0),点B(0,3),点C在圆x2+y2=1上,当ABC的面积最小时,点C的坐标为16某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名学生,抽到高二年级女生的概率为,先采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于 .17已知i是虚数单位,复数的模为18在各项为正数的等比数列an中,若a6=a5+2a4,则公比q=三、解答题19已知函数f(x)=xlnx,求函数f(x)的最小值20如图,已知几何体的底面ABCD 为正方形,ACBD=N,PD平面ABCD,PD=AD=2EC,ECPD()求异面直线BD与AE所成角:()求证:BE平面PAD;()判断平面PAD与平面PAE是否垂直?若垂直,请加以证明;若不垂直,请说明理由21(本小题满分12分)已知函数,数列满足:,().(1)求数列的通项公式;(2)设数列的前项和为,求数列的前项和.【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.22设f(x)=ax2(a+1)x+1(1)解关于x的不等式f(x)0;(2)若对任意的a1,1,不等式f(x)0恒成立,求x的取值范围23长方体ABCDA1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点(1)求证:BD1平面A1DE;(2)求证:A1D平面ABD124现有5名男生和3名女生(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?特克斯县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A(UB)A=x|x2x20=x|1x2,B=x|y=ln(1x)=x|1x0=x|x1,则UB=x|x1,则A(UB)=x|1x2故选:B【点评】本题主要考查Venn图表达 集合的关系和运算,比较基础2 【答案】 C【解析】二项式定理【专题】计算题【分析】利用二项展开式的通项公式求出展开式的xk的系数,将k的值代入求出各种情况的系数【解答】解:(x+2)5的展开式中xk的系数为C5k25k当k1时,C5k25k=C5124=80,当k=2时,C5k25k=C5223=80,当k=3时,C5k25k=C5322=40,当k=4时,C5k25k=C542=10,当k=5时,C5k25k=C55=1,故展开式中xk的系数不可能是50故选项为C【点评】本题考查利用二项展开式的通项公式求特定项的系数3 【答案】 C【解析】【专题】排列组合【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法这类三角形共有473=1372个另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点这类三角形共有42121=1764个综上可知,可得不同三角形的个数为1372+1764=3136故选:C【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题4 【答案】B【解析】解:根据选项可知a0a变动时,函数y=2|x|的定义域为a,b,值域为1,16,2|b|=16,b=4故选B【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题5 【答案】A【解析】解:x22xP=xZ|x22=x|x,xZ|=1,0,1,又全集U=1,0,1,2,UP=2故选:A6 【答案】B【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R,R=,S=4R2=12故选B7 【答案】B【解析】解:结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数反设的内容是 假设a,b,c中至少有两个偶数或都是奇数故选B【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“8 【答案】B【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=axy(a0)得y=axz,a0,目标函数的斜率k=a0平移直线y=axz,由图象可知当直线y=axz和直线2xy+2=0平行时,当直线经过B时,此时目标函数取得最大值时最优解只有一个,不满足条件当直线y=axz和直线x3y+1=0平行时,此时目标函数取得最大值时最优解有无数多个,满足条件此时a=故选:B9 【答案】A【解析】解:b=()0.8=20.821.2=a,且b1,又c=2log52=log541,cba故选:A10【答案】B【解析】解:在等差数列an中,由a4+a8=22,得2a6=22,a6=11又a3=5,得d=,a1=a32d=54=1的前20项和为:=故选:B11【答案】D【解析】因为,有可能为负值,所以排除A,C,因为函数为减函数且,所以,排除B,故选D答案:D 12【答案】C【解析】解:由于f(x)=x22ax的对称轴是直线x=a,图象开口向上,故函数在区间(,a为减函数,在区间a,+)上为增函数,又由函数f(x)=x22ax,x1,+)是增函数,则a1故答案为:C二、填空题13【答案】【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点处取得最大值为.考点:线性规划14【答案】1或0 【解析】解:满足约束条件的可行域如下图阴影部分所示:kxy+10表示地(0,1)点的直线kxy+1=0下方的所有点(包括直线上的点)由关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,可得直线kxy+1=0与y轴垂直,此时k=0或直线kxy+1=0与y=x垂直,此时k=1综上k=1或0故答案为:1或0【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kxy+1=0与y轴垂直或与y=x垂直,是解答的关键15【答案】(,) 【解析】解:设C(a,b)则a2+b2=1,点A(2,0),点B(0,3),直线AB的解析式为:3x+2y6=0如图,过点C作CFAB于点F,欲使ABC的面积最小,只需线段CF最短则CF=,当且仅当2a=3b时,取“=”,a=,联立求得:a=,b=,故点C的坐标为(,)故答案是:(,)【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题16【答案】【解析】考点:分层抽样方法17【答案】 【解析】解:复数=i1的模为=故答案为:【点评】本题考查了复数的运算法则、模的计算公式,属于基础题18【答案】2 【解析】解:由a6=a5+2a4得,a4q2=a4q+2a4,即q2q2=0,解得q=2或q=1,又各项为正数,则q=2,故答案为:2【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题三、解答题19【答案】 【解析】解:函数的定义域为(0,+)求导函数,可得f(x)=1+lnx令f(x)=1+lnx=0,可得0x时,f(x)0,x时,f(x)0时,函数取得极小值,也是函数的最小值f(x)min=【点评】本题考查导数知识的运用,考查函数的最值,考查学生分析解决问题的能力,属于中档题20【答案】【解析】解:()PD平面ABCD,ECPD,EC平面ABCD,又BD平面ABCD,ECBD,底面ABCD为正方形,ACBD=N,ACBD,又ACEC=C,AC,EC平面AEC,BD平面AEC,BDAE,异面直线BD与AE所成角的为90()底面ABCD为正方形,BCAD,BC平面PAD,AD平面PAD,BC平面PAD,ECPD,EC平面PAD,PD平面PAD,EC平面PAD,ECBC=C,EC平面BCE,BC平面BCE,平面BCE平面PAD,BE平面BCE,BE平面PAD() 假设平面PAD与平面PAE垂直,作PA中点F,连结DF,PD平面ABCD,AD CD平面ABCD,PDCD,PDAD,PD=AD,F是PA的中点,DFPA,PDF=45,平面PAD平面PAE,平面PAD平面PAE=PA,DF平面PAD,DF平面PAE,DFPE,PDCD,且正方形ABCD中,ADCD,PDAD=D,CD平面PAD又DF平面PAD,DFCD,PD=2EC,ECPD,PE与CD相交,DF平面PDCE,DFPD,这与PDF=45矛盾,假设不成立即平面PAD与平面PAE不垂直【点评】本题主要考查了线面平行和线面垂直的判定定理的运用考查了学生推理能力和空间思维能力21【答案】【解析】(1),. 即,所以数列是以首项为2,公差为2的等差数列, . (5分)(2)数列是等差数列,. (8分). (12分)22【答案】 【解析】解:(1)f(x)0,即为ax2(a+1)x+10,即有(ax1)(x1)0,当a=0时,即有1x0,解得x1;当a0时,即有(x1)(x)0,由1可得x1;当a=1时,(x1)20,即有xR,x1;当a1时,1,可得x1或x;当0a1时,1,可得x1或x综上可得,a=0时,解集为x|x1;a0时,解集为x|x1;a=1时,解集为x|xR,x1;a1时,解集为x|x1或x;0a1时,解集为x|x1或x(2)对任意的a1,1,不等式f(x)0恒成立,即为ax2(a+1)x+10,即a(x21)x+10,对任意的a1,1恒成立设g(a)=a(x21)x+1,a1,1则g(1)0,且g(1)0,即(x21)x+10,且(x21)x+10,即(x1)(x+2)0,且x(x1)0,解得2x1,且x1或x0可得2x0故x的取值范围是(2,0)23【答案】 【解析】证明:(1)连结A1D,AD1,A1DAD1=O,连结OE,长方体ABCDA1B1C1D1中,ADD1A1是矩形,O是AD1的中点,OEBD1,OEBD1,OE平面ABD1,BD1平面ABD1,BD1平面A1DE(2)长方体ABCDA1B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国风新中式模版02
- 非遗传承中的地域文化与全球视野
- 《新情景日语系列会话教程学生用书入门篇》课件-第五课
- 中秋之韵模板
- 掌握科学阅读
- 大寒节气的养生与习俗
- 2025年关于货车司机劳动合同
- 备考优化指南
- 守护校园 安全自护
- 2025年政府土地使用权出让协议(整块出让)范本
- 一级注册建筑师真题含答案2025年
- 上海教育版数学八年级上册《直角三角形》导学案
- 建设美丽中国课件
- 数字经济背景下的财务共享中心建设
- 能源平台租赁合同协议
- 淮安城市介绍旅游攻略家乡介绍
- 2024年江苏徐州中考地理试卷真题及答案详解(精校打印)
- 2025年安全月主要责任人讲安全课件三:安全月主题宣讲课件
- 光伏施工安全培训
- 初中语文第23课《“蛟龙”探海》课件-2024-2025学年统编版语文七年级下册
- 烤串加盟合同协议
评论
0/150
提交评论