




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青原区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 在ABC中,a,b,c分别是角A,B,C的对边,a=5,b=4,cosC=,则ABC的面积是( )A16B6C4D82 如果ab,那么下列不等式中正确的是( )AB|a|b|Ca2b2Da3b33 下列命题中的说法正确的是( )A命题“若x2=1,则x=1”的否命题为“若x2=1,则x1”B“x=1”是“x2+5x6=0”的必要不充分条件C命题“xR,使得x2+x+10”的否定是:“xR,均有x2+x+10”D命题“在ABC中,若AB,则sinAsinB”的逆否命题为真命题4 如图,在正六边形ABCDEF中,点O为其中心,则下列判断错误的是( )A =BCD5 在空间中,下列命题正确的是( )A如果直线m平面,直线n内,那么mnB如果平面内的两条直线都平行于平面,那么平面平面C如果平面外的一条直线m垂直于平面内的两条相交直线,那么mD如果平面平面,任取直线m,那么必有m6 设,为正实数,则=( )A. B. C. D.或【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.7 已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是( )ABCD8 若实数x,y满足不等式组则2x+4y的最小值是( )A6B6C4D29 已知a0,实数x,y满足:,若z=2x+y的最小值为1,则a=( )A2B1CD10已知a,b都是实数,那么“a2b2”是“ab”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件11设平面与平面相交于直线m,直线a在平面内,直线b在平面内,且bm,则“”是“ab”的( )A必要不充分条件B充分不必要条件C充分必要条件D既不充分也不必要条件12如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A, B, CV|VDV|0V二、填空题13等比数列an的前n项和Snk1k22n(k1,k2为常数),且a2,a3,a42成等差数列,则an_14某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量(单位:毫克/升)与时间(单位:小时)间的关系为(,均为正常数)如果前5个小时消除了的污染物,为了消除的污染物,则需要_小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用.15若实数x,y满足x2+y22x+4y=0,则x2y的最大值为16数列an是等差数列,a4=7,S7= 17已知,那么 .18一组数据2,x,4,6,10的平均值是5,则此组数据的标准差是三、解答题19某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:40,50),50,60),60,70),70,80),80,90),90,100()求图中x的值,并估计该班期中考试数学成绩的众数;()从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率20(本小题满分12分)已知向量满足:,.(1)求向量与的夹角;(2)求.21如图,在ABC中,BC边上的中线AD长为3,且sinB=,cosADC=()求sinBAD的值;()求AC边的长22设函数f(x)=kx2+2x(k为实常数)为奇函数,函数g(x)=af(x)1(a0且a1)()求k的值;()求g(x)在1,2上的最大值;()当时,g(x)t22mt+1对所有的x1,1及m1,1恒成立,求实数t的取值范围23已知函数f(x)=(ax2+x1)ex,其中e是自然对数的底数,aR()若a=0,求曲线f(x)在点(1,f(1)处的切线方程;()若,求f(x)的单调区间;()若a=1,函数f(x)的图象与函数的图象仅有1个公共点,求实数m的取值范围 24已知函数f(x)=aln(x+1)+x2x,其中a为非零实数()讨论f(x)的单调性;()若y=f(x)有两个极值点,且,求证:(参考数据:ln20.693) 青原区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:a=5,b=4,cosC=,可得:sinC=,SABC=absinC=8故选:D2 【答案】D【解析】解:若a0b,则,故A错误;若a0b且a,b互为相反数,则|a|=|b|,故B错误;若a0b且a,b互为相反数,则a2b2,故C错误;函数y=x3在R上为增函数,若ab,则a3b3,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题3 【答案】D【解析】解:A命题“若x2=1,则x=1”的否命题为“若x21,则x1”,故A错误,B由x2+5x6=0得x=1或x=6,即“x=1”是“x2+5x6=0”既不充分也不必要条件,故B错误,C命题“xR,使得x2+x+10”的否定是:“xR,均有x2+x+105,故C错误,D若AB,则ab,由正弦定理得sinAsinB,即命题“在ABC中,若AB,则sinAsinB”的为真命题则命题的逆否命题也成立,故D正确故选:D【点评】本题主要考查命题的真假判断,涉及四种命题的关系以及充分条件和必要条件的判断,含有量词的命题的否定,比较基础4 【答案】D【解析】解:由图可知,但不共线,故,故选D【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题5 【答案】 C【解析】解:对于A,直线m平面,直线n内,则m与n可能平行,可能异面,故不正确;对于B,如果平面内的两条相交直线都平行于平面,那么平面平面,故不正确;对于C,根据线面垂直的判定定理可得正确;对于D,如果平面平面,任取直线m,那么可能m,也可能m和斜交,;故选:C【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题6 【答案】B.【解析】,故,而事实上,故选B.7 【答案】A【解析】解:由题意可知截取三棱台后的几何体是7面体,左视图中前、后平面是线段, 上、下平面也是线段,轮廓是正方形,AP是虚线,左视图为:故选A【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视8 【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=x+,平移直线y=x+,由图象可知当直线y=x+经过点C时,直线y=x+的截距最小,此时z最小,由,解得,即C(3,3),此时z=2x+4y=23+4(3)=612=6故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键9 【答案】 C【解析】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=2x+z,平移直线y=2x+z,由图象可知当直线y=2x+z经过点C时,直线y=2x+z的截距最小,此时z最小即2x+y=1,由,解得,即C(1,1),点C也在直线y=a(x3)上,1=2a,解得a=故选:C【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法10【答案】D【解析】解:“a2b2”既不能推出“ab”;反之,由“ab”也不能推出“a2b2”“a2b2”是“ab”的既不充分也不必要条件故选D11【答案】B【解析】解:bm,当,则由面面垂直的性质可得ab成立,若ab,则不一定成立,故“”是“ab”的充分不必要条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键12【答案】D【解析】解:根据几何体的正视图和侧视图,得;当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为122=;当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;所以,该几何体体积的所有可能取值集合是V|0V故选:D【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目二、填空题13【答案】【解析】当n1时,a1S1k12k2,当n2时,anSnSn1(k1k22n)(k1k22n1)k22n1,k12k2k220,即k1k20,又a2,a3,a42成等差数列2a3a2a42,即8k22k28k22.由联立得k11,k21,an2n1.答案:2n114【答案】15【解析】由条件知,所以.消除了的污染物后,废气中的污染物数量为,于是,所以小时.15【答案】10【解析】【分析】先配方为圆的标准方程再画出图形,设z=x2y,再利用z的几何意义求最值,只需求出直线z=x2y过图形上的点A的坐标,即可求解【解答】解:方程x2+y22x+4y=0可化为(x1)2+(y+2)2=5,即圆心为(1,2),半径为的圆,(如图)设z=x2y,将z看做斜率为的直线z=x2y在y轴上的截距,经平移直线知:当直线z=x2y经过点A(2,4)时,z最大,最大值为:10故答案为:1016【答案】49【解析】解:=7a4=49故答案:49【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细求解17【答案】【解析】试题分析:由得, 考点:两角和与差的正切公式18【答案】2 【解析】解:一组数据2,x,4,6,10的平均值是5,2+x+4+6+10=55,解得x=3,此组数据的方差 (25)2+(35)2+(45)2+(65)2+(105)2=8,此组数据的标准差S=2故答案为:2【点评】本题考查一组数据的标准差的求法,解题时要认真审题,注意数据的平均数和方差公式的求法三、解答题19【答案】 【解析】解:()由(0.0063+0.01+0.054+x)10=1,解得x=0.018,前三组的人数分别为:(0.0062+0.01+0.018)1050=20,第四组为0.0541050=27人,故数学成绩的众数落在第四组,故众数为75分()分数在40,50)、90,100的人数分别是3人,共6人,这2人成绩均不低于90分的概率P=【点评】本题考查频率分布直方图及古典概型的问题,前者要熟练掌握直方图的基本性质和如何利用直方图求众数;后者往往和计数原理结合起来考查20【答案】(1);(2)【解析】试题分析:(1)要求向量的夹角,只要求得这两向量的数量积,而由已知,结合数量积的运算法则可得,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式,把考点:向量的数量积,向量的夹角与模【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式求得这两个向量夹角的余弦值;第四步,根据向量夹角的范围在内及余弦值求出两向量的夹角21【答案】 【解析】解:()由题意,因为sinB=,所以cosB=又cosADC=,所以sinADC=所以sinBAD=sin(ADCB)=()=()在ABD中,由正弦定理,得,解得BD=故BC=15,从而在ADC中,由余弦定理,得AC2=9+2252315()=,所以AC=【点评】本题考查差角的正弦公式,考查正弦定理、余弦定理的运用,属于中档题22【答案】 【解析】解:()由f(x)=f(x)得 kx22x=kx22x,k=0()g(x)=af(x)1=a2x1=(a2)x1当a21,即a1时,g(x)=(a2)x1在1,2上为增函数,g(x)最大值为g(2)=a41当a21,即0a1时,g(x)=(a2)x在1,2上为减函数,g(x)最大值为()由()得g(x)在x1,1上的最大值为,1t22mt+1即t22mt0在1,1上恒成立令h(m)=2mt+t2,即所以t(,202,+)【点评】本题考查函数的奇偶性,考查函数的最值,考查恒成立问题,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题23【答案】 【解析】解:()a=0,f(x)=(x1)ex,f(x)=ex+(x1)ex=xex,曲线f(x)在点(1,f(1)处的切线斜率为k=f(1)=e又f(1)=0,所求切线方程为y=e(x1),即exy4=0()f(x)=(2ax+1)ex+(ax2+x1)ex=ax2+(2a+1)xex=x(ax+2a+1)ex,若a=,f(x)=x2ex0,f(x)的单调递减区间为(,+),若a,当x或x0时,f(x)0;当x0时,f(x)0f(x)的单调递减区间为(,0,+);单调递增区间为,0()当a=1时,由()知,f(x)=(x2+x1)ex在(,1)上单调递减,在1,0单调递增,在0,+)上单调递减,f(x)在x=1处取得极小值f(1)=,在x=0处取得极大值f(0)=1,由,得g(x)=2x2+2x当x1或x0时,g(x)0;当1x0时,g(x)0g(x)在(,1上单调递增,在1,0单调递减,在0,+)上单调递增故g(x)在x=1处取得极大值,在x=0处取得极小值g(0)=m,数f(x)与函数g(x)的图象仅有1个公共点,g(1)f(1)或g(0)f(0),即.【点评】本题考查了曲线的切线方程问题,考查函数的单调性、极值问题,考查导数的应用,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 村干部考公务员考试题及答案详解
- 2025年度行政合同救济制度在公共资源交易合同中的合同范本
- 2025年度企事业单位短途客运车辆租赁合同范本
- 2025年度口腔医疗资源整合承包服务协议
- 2025年度数字货币保密知识产权与不竞争协议
- 2025版智能安防铁艺栏杆安装与维护服务合同
- 2025年建筑材料搬运承包合同
- 2025版公园场地租赁与旅游观光合作服务协议
- 2025年度房地产项目工程验收合同范本
- 2025版智能语音识别软件知识产权许可合同
- 餐饮公司应聘简历
- 牢记教师初心不忘育人使命作新时代合格人民教师课件
- 一科一品一特色护理妇产科
- 《老年照护芳香疗法应用规范》标准文本及编制说明
- 2024-年全国医学博士外语统一入学考试英语试题
- 冶金渣公司安全生产委员会工作职责
- 老年患者护理心理护理
- 项目担保合作协议范本
- 2024-2025学年湖南省“炎德·英才·名校联考联合体”高二第一次联考(暨入学检测)数学试题(含答案)
- 夹娃娃机合同模板
- 维修人员技能提升与企业绩效关联研究
评论
0/150
提交评论