




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷望城区二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 线段AB在平面内,则直线AB与平面的位置关系是( )AABBABC由线段AB的长短而定D以上都不对2 已知向量=(1,n),=(1,n2),若与共线则n等于( )A1BC2D43 已知圆C1:x2+y2=4和圆C2:x2+y2+4x4y+4=0关于直线l对称,则直线l的方程为()Ax+y=0Bx+y=2Cxy=2Dxy=24 某几何体的三视图如图所示,则该几何体的体积为( )ABCD【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力5 设函数的集合,平面上点的集合,则在同一直角坐标系中,P中函数的图象恰好经过Q中两个点的函数的个数是A4B6C8D106 在中,若,则( )A B C. D7 设函数y=的定义域为M,集合N=y|y=x2,xR,则MN=( )ABNC1,+)DM8 已知三棱锥ABCO,OA、OB、OC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为()AB或36+C36D或369 某公园有P,Q,R三只小船,P船最多可乘3人,Q船最多可乘2人,R船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )A36种B18种C27种D24种10棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )AB18CD11=( )AiBiC1+iD1i12在等差数列中,已知,则( )A12B24C36D48二、填空题13在复平面内,记复数+i对应的向量为,若向量饶坐标原点逆时针旋转60得到向量所对应的复数为14如果直线3ax+y1=0与直线(12a)x+ay+1=0平行那么a等于15有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是_元16设所有方程可以写成(x1)sin(y2)cos=1(0,2)的直线l组成的集合记为L,则下列说法正确的是;直线l的倾斜角为;存在定点A,使得对任意lL都有点A到直线l的距离为定值;存在定圆C,使得对任意lL都有直线l与圆C相交;任意l1L,必存在唯一l2L,使得l1l2;任意l1L,必存在唯一l2L,使得l1l217已知函数f(x)=(2x+1)ex,f(x)为f(x)的导函数,则f(0)的值为18某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有种三、解答题19已知F1,F2分别是椭圆=1(9m0)的左右焦点,P是该椭圆上一定点,若点P在第一象限,且|PF1|=4,PF1PF2()求m的值;()求点P的坐标20(选做题)已知f(x)=|x+1|+|x1|,不等式f(x)4的解集为M(1)求M;(2)当a,bM时,证明:2|a+b|4+ab| 21如图所示的几何体中,EA平面ABC,BD平面ABC,AC=BC=BD=2AE=,M是AB的中点(1)求证:CMEM;(2)求MC与平面EAC所成的角22(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是,曲线的参数方程是是参数)()写出曲线的直角坐标方程和曲线的普通方程;()求的取值范围,使得,没有公共点23在平面直角坐标系中,过点的直线与抛物线相交于点、两点,设,(1)求证:为定值;(2)是否存在平行于轴的定直线被以为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长,如果不存在,说明理由24(本小题满分12分)如图四棱柱ABCDA1B1C1D1的底面为菱形,AA1底面ABCD,M为A1A的中点,ABBD2,且BMC1为等腰三角形(1)求证:BDMC1;(2)求四棱柱ABCDA1B1C1D1的体积望城区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:线段AB在平面内,直线AB上所有的点都在平面内,直线AB与平面的位置关系:直线在平面内,用符号表示为:AB故选A【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力公理一:如果一条线上的两个点在平面上则该线在平面上2 【答案】A【解析】解:向量=(1,n),=(1,n2),且与共线1(n2)=1n,解之得n=1故选:A3 【答案】D【解析】【分析】由题意可得圆心C1和圆心C2,设直线l方程为y=kx+b,由对称性可得k和b的方程组,解方程组可得【解答】解:由题意可得圆C1圆心为(0,0),圆C2的圆心为(2,2),圆C1:x2+y2=4和圆C2:x2+y2+4x4y+4=0关于直线l对称,点(0,0)与(2,2)关于直线l对称,设直线l方程为y=kx+b,k=1且=k+b,解得k=1,b=2,故直线方程为xy=2,故选:D4 【答案】D【解析】由三视图知几何体为一个底面半径为2高为4的半圆柱中挖去一个以轴截面为底面高为2的四棱锥,因此该几何体的体积为,故选D5 【答案】B【解析】本题考查了对数的计算、列举思想a时,不符;a0时,ylog2x过点(,1),(1,0),此时b0,b1符合;a时,ylog2(x)过点(0,1),(,0),此时b0,b1符合;a1时,ylog2(x1)过点(,1),(0,0),(1,1),此时b1,b1符合;共6个6 【答案】B【解析】考点:正弦定理的应用.7 【答案】B【解析】解:根据题意得:x+10,解得x1,函数的定义域M=x|x1;集合N中的函数y=x20,集合N=y|y0,则MN=y|y0=N故选B8 【答案】D【解析】【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在BCO内运动(含边界), 有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或故选D9 【答案】 C【解析】排列、组合及简单计数问题【专题】计算题;分类讨论【分析】根据题意,分4种情况讨论,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,P船乘1个大人和2个小孩共3人,Q船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案【解答】解:分4种情况讨论,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,有A33=6种情况,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,有A33A22=12种情况,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,有C322=6种情况,P船乘1个大人和2个小孩共3人,Q船乘2个大人,有C31=3种情况,则共有6+12+6+3=27种乘船方法,故选C【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式10【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:322+3()+=,故选:D11【答案】 B【解析】解: =i故选:B【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力12【答案】B【解析】,所以,故选B答案:B 二、填空题13【答案】2i 【解析】解:向量饶坐标原点逆时针旋转60得到向量所对应的复数为(+i)(cos60+isin60)=(+i)()=2i,故答案为 2i【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60得到向量对应的复数为(+i)(cos60+isin60),是解题的关键14【答案】 【解析】解:直线3ax+y1=0与直线(12a)x+ay+1=0平行,3aa=1(12a),解得a=1或a=,经检验当a=1时,两直线重合,应舍去故答案为:【点评】本题考查直线的一般式方程和平行关系,属基础题15【答案】1464【解析】【知识点】函数模型及其应用【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,房间C用涂料2,即最低的涂料总费用是元。故答案为:146416【答案】 【解析】解:对于:倾斜角范围与的范围不一致,故错误;对于:(x1)sin(y2)cos=1,(0,2),可以认为是圆(x1)2+(y2)2=1的切线系,故正确;对于:存在定圆C,使得任意lL,都有直线l与圆C相交,如圆C:(x1)2+(y2)2=100,故正确;对于:任意l1L,必存在唯一l2L,使得l1l2,作图知正确;对于:任意意l1L,必存在两条l2L,使得l1l2,画图知错误故答案为:【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用17【答案】3 【解析】解:f(x)=(2x+1)ex,f(x)=2ex+(2x+1)ex,f(0)=2e0+(20+1)e0=2+1=3故答案为:318【答案】75 【解析】计数原理的应用【专题】应用题;排列组合【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,根据分类计数加法得到共有60+15=75种不同的方法故答案为:75【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏三、解答题19【答案】 【解析】解:()由已知得:|PF2|=64=2,在PF1F2中,由勾股定理得,即4c2=20,解得c2=5m=95=4;()设P点坐标为(x0,y0),由()知,解得P()【点评】本题考查椭圆方程的求法,考查了椭圆的简单性质,属中档题20【答案】 【解析】()解:f(x)=|x+1|+|x1|=当x1时,由2x4,得2x1;当1x1时,f(x)=24;当x1时,由2x4,得1x2所以M=(2,2)()证明:当a,bM,即2a,b2,4(a+b)2(4+ab)2=4(a2+2ab+b2)(16+8ab+a2b2)=(a24)(4b2)0,4(a+b)2(4+ab)2,2|a+b|4+ab|【点评】本题考查绝对值函数,考查解不等式,考查不等式的证明,解题的关键是将不等式写成分段函数,利用作差法证明不等式 21【答案】 【解析】(1)证明:AC=BC=AB,ABC为等腰直角三角形,M为AB的中点,AM=BM=CM,CMAB,EA平面ABC,EAAC,设AM=BM=CM=1,则有AC=,AE=AC=,在RtAEC中,根据勾股定理得:EC=,在RtAEM中,根据勾股定理得:EM=,EM2+MC2=EC2,CMEM;(2)解:过M作MNAC,可得MCA为MC与平面EAC所成的角,则MC与平面EAC所成的角为4522【答案】【解析】 【解析】()曲线的直角坐标方程是,曲线的普通方程是5分()对于曲线 ,令,则有故当且仅当时,没有公共点,解得10分23【答案】(1)证明见解析;(2)弦长为定值,直线方程为.【解析】(2)根据两点间距离公式、点到直线距离公式及勾股定理可求得弦长为 ,进而得时为定值.试题解析:(1)设直线的方程为,由得,因此有为定值111(2)设存在直线:满足条件,则的中点,因此以为直径圆的半径,点到直线的距离,所以所截弦长为当,即时,弦长为定值2,这时直线方程为考点:1、直线与圆、直线与抛物线的位置关系的性质;2、韦达定理、点到直线距离公式及定值问题.24【答案】【解析】解:(1)证明:如图,连接AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年国际贸易理论试题
- 家庭代际支持对老年人健康的影响研究-基于CHARLS数据的实证分析
- 美发年终工作总结
- 小学数学人教版三年级下笔算乘法课件
- 天然药物学试题及答案
- 梦幻城堡试题及答案
- 电工中级考试题及答案
- 教育评价面试题及答案
- 数据库java面试题及答案
- 幼儿礼仪面试题及答案
- 叉车工安全考试
- 第一课-入乡随俗《发展汉语-初级综合2》
- 2025年离婚协议书内容
- 西湖大学《土木工程CAD》2023-2024学年第二学期期末试卷
- 建立健全各项管理制度
- 公司工伤报销管理制度
- 病媒生物试题及答案
- T/CHC 1001-2019植物源高有机硒食品原料
- 农村果园承包合同范本
- 2025年中药材行业市场分析报告
- 拆迁款收款协议书
评论
0/150
提交评论