




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
川汇区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是( )Ai5?Bi4?Ci4?Di5?2 若为等差数列,为其前项和,若,则成立的最大自然数为( )A11 B12 C13 D143 若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4 已知是虚数单位,若复数()的实部与虚部相等,则( )A B C D 5 在二项式(x3)n(nN*)的展开式中,常数项为28,则n的值为( )A12B8C6D46 若圆心坐标为的圆在直线上截得的弦长为,则这个圆的方程是( )A B C D7 已知向量|=, =10,|+|=5,则|=( )ABC5D258 已知命题p:22,命题q:x0R,使得x02+2x0+2=0,则下列命题是真命题的是( )ApBpqCpqDpq9 如图,空间四边形OABC中,点M在OA上,且,点N为BC中点,则等于( )ABCD10如图,已知平面=,是直线上的两点,是平面内的两点,且,是平面上的一动点,且有,则四棱锥体积的最大值是()A B C D11设函数f(x)=,则f(1)=( )A0B1C2D312设有直线m、n和平面、,下列四个命题中,正确的是( )A若m,n,则mnB若m,n,m,n,则C若,m,则mD若,m,m,则m二、填空题13已知函数的三个零点成等比数列,则 .14若命题“xR,x22x+m0”是假命题,则m的取值范围是15【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)lnx (mR)在区间1,e上取得最小值4,则m_16已知z,为复数,i为虚数单位,(1+3i)z为纯虚数,=,且|=5,则复数=17(若集合A2,3,7,且A中至多有1个奇数,则这样的集合共有个18自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到原点的长,则的最小值为( )AB3C4D【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想三、解答题19如图,四边形ABCD内接于O,过点A作O的切钱EP交CB 的延长线于P,己知PAB=25(1)若BC是O的直径,求D的大小;(2)若DAE=25,求证:DA2=DCBP 20已知函数f(x)=xlnx,求函数f(x)的最小值21已知f(x)=log3(1+x)log3(1x)(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x,时,不等式 f(x)g(x)有解,求k的取值范围22(本小题满分12分)已知等差数列的前项和为,且,(1)求的通项公式和前项和;(2)设,为数列的前项和,若不等式对于任意的恒成立,求实数的取值范围23已知正项等差an,lga1,lga2,lga4成等差数列,又bn=(1)求证bn为等比数列(2)若bn前3项的和等于,求an的首项a1和公差d24过抛物线y2=2px(p0)的焦点F作倾斜角为45的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程川汇区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】 B【解析】解:模拟执行程序框图,可得i=1,sum=0,s=0满足条件,i=2,sum=1,s=满足条件,i=3,sum=2,s=+满足条件,i=4,sum=3,s=+满足条件,i=5,sum=4,s=+=1+=由题意,此时不满足条件,退出循环,输出s的,则判断框中应填入的条件是i4故选:B【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误2 【答案】A【解析】考点:得出数列的性质及前项和【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档题,本题的解答中,由“,”判断前项和的符号问题是解答的关键 3 【答案】A【解析】解:由奇函数的定义可知:若f(x)为奇函数,则任意x都有f(x)=f(x),取x=0,可得f(0)=0;而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,显然满足f(0)=0,但f(x)为偶函数由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0”的充分不必要条件故选:A4 【答案】A考点:复数运算5 【答案】B【解析】解:展开式通项公式为Tr+1=(1)rx3n4r,则二项式(x3)n(nN*)的展开式中,常数项为28,n=8,r=6故选:B【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题6 【答案】B【解析】考点:圆的方程.11117 【答案】C【解析】解:;由得, =;故选:C8 【答案】D【解析】解:命题p:22是真命题,方程x2+2x+2=0无实根,故命题q:x0R,使得x02+2x0+2=0是假命题,故命题p,pq,pq是假命题,命题pq是真命题,故选:D9 【答案】B【解析】解: =;又,故选B【点评】本题考查了向量加法的几何意义,是基础题10【答案】A【解析】【知识点】空间几何体的表面积与体积【试题解析】由题知:是直角三角形,又,所以。因为,所以PB=2PA。作于M,则。令AM=t,则所以即为四棱锥的高,又底面为直角梯形,所以故答案为:A11【答案】D【解析】解:f(x)=,f(1)=ff(7)=f(5)=3故选:D12【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D二、填空题13【答案】考点:三角函数的图象与性质,等比数列的性质,对数运算【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题14【答案】m1 【解析】解:若命题“xR,x22x+m0”是假命题,则命题“xR,x22x+m0”是真命题,即判别式=44m0,解得m1,故答案为:m115【答案】3e【解析】f(x),令f(x)0,则xm,且当xm时,f(x)m时,f(x)0,f(x)单调递增若m1,即m1时,f(x)minf(1)m1,不可能等于4;若1me,即eme,即me时,f(x)minf(e)1,令14,得m3e,符合题意综上所述,m3e.16【答案】(7i) 【解析】解:设z=a+bi(a,bR),(1+3i)z=(1+3i)(a+bi)=a3b+(3a+b)i为纯虚数,又=,|=,把a=3b代入化为b2=25,解得b=5,a=15=(7i)故答案为(7i)【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出17【答案】6 【解析】解:集合A为2,3,7的真子集有7个,奇数3、7都包含的有3,7,则符合条件的有71=6个故答案为:6【点评】本题考查集合的子集问题,属基础知识的考查18【答案】D【解析】三、解答题19【答案】 【解析】解:(1)EP与O相切于点A,ACB=PAB=25,又BC是O的直径,ABC=65,四边形ABCD内接于O,ABC+D=180,D=115证明:(2)DAE=25,ACD=PAB,D=PBA,ADCPBA,又DA=BA,DA2=DCBP 20【答案】 【解析】解:函数的定义域为(0,+)求导函数,可得f(x)=1+lnx令f(x)=1+lnx=0,可得0x时,f(x)0,x时,f(x)0时,函数取得极小值,也是函数的最小值f(x)min=【点评】本题考查导数知识的运用,考查函数的最值,考查学生分析解决问题的能力,属于中档题21【答案】 【解析】解:(1)f(x)=log3(1+x)log3(1x)为奇函数理由:1+x0且1x0,得定义域为(1,1),(2分)又f(x)=log3(1x)log3(1+x)=f(x),则f(x)是奇函数.(2)g(x)=log=2log3,(5分)又1x1,k0,(6分)由f(x)g(x)得log3log3,即,(8分)即k21x2,(9分)x,时,1x2最小值为,(10分)则k2,(11分)又k0,则k,即k的取值范围是(,.【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题22【答案】【解析】【命题意图】本题考查等差数列通项与前项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用23【答案】 【解析】(1)证明:设an中首项为a1,公差为dlga1,lga2,lga4成等差数列,2lga2=lga1+lga4,a22=a1a4即(a1+d)2=a1(a1+3d),d=0或d=a1当d=0时,an=a1,bn=, =1,bn为等比数列;当d=a1时,an=na1,bn=, =,bn为等比数列综上可知bn为等比数列(2)解:当d=0时,S3=,所以a1=;当d=a1时,S3=,故a1=3=d【点评】本题主要考查等差数列与等比数列的综合以及分类讨
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北省沙河市2025年上半年公开招聘辅警试题含答案分析
- 2025版山东建筑工程项目管理合同
- 2025年新型地坪漆施工劳务分包技术服务合同
- 2025年餐厅装饰装修工程材料供应合同
- 2025年房地产项目开发与文化遗产保护管理合同
- 贵州省赤水市2025年上半年公开招聘村务工作者试题含答案分析
- 2025年度大型水利工程地质勘察服务合同范本
- 2025年智能橱柜安装与售后服务合同
- 河北省高碑店市2025年上半年事业单位公开遴选试题含答案分析
- 传统产业转型升级的发展路径
- 口腔科台账护理工作规范
- 新浙教版九年级上科学教学计划与实施细则
- 退兵移交协议书范本
- 经营管理岗位竞聘
- 2025-2030中国雪茄和雪茄行业市场发展趋势与前景展望战略研究报告
- 安检人员考试题及答案
- 500强企业管理制度
- 美容过敏纠纷协议书
- 幼儿园教师保教结合培训
- 2025年旅游行业安全生产实施方案范文
- 压力容器安全管理考核试卷
评论
0/150
提交评论