




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷江安县二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 下列函数中,与函数的奇偶性、单调性相同的是( )A B C D2 已知函数f(x)=2ax33x2+1,若 f(x)存在唯一的零点x0,且x00,则a的取值范围是( )A(1,+)B(0,1)C(1,0)D(,1)3 若变量满足约束条件,则目标函数的最小值为( )A-5 B-4 C.-2 D34 数列an的首项a1=1,an+1=an+2n,则a5=( )AB20C21D315 已知aR,复数z=(a2i)(1+i)(i为虚数单位)在复平面内对应的点为M,则“a=0”是“点M在第四象限”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件6 已知ABC是锐角三角形,则点P(cosCsinA,sinAcosB)在( )A第一象限B第二象限C第三象限D第四象限7 二项式的展开式中项的系数为10,则( )A5 B6 C8 D10【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力8 已知直线x+y+a=0与圆x2+y2=1交于不同的两点A、B,O是坐标原点,且,那么实数a的取值范围是( )ABCD9 奇函数满足,且在上是单调递减,则的解集为( )ABC D10直线:(为参数)与圆:(为参数)的位置关系是()A相离 B相切 C相交且过圆心 D相交但不过圆心11在张邱建算经中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( )A33% B49% C62% D88%12设是偶函数,且在上是增函数,又,则使的的取值范围是( )A或 B或 C D或二、填空题13给出下列四个命题:函数y=|x|与函数表示同一个函数;奇函数的图象一定通过直角坐标系的原点;函数y=3x2+1的图象可由y=3x2的图象向上平移1个单位得到;若函数f(x)的定义域为0,2,则函数f(2x)的定义域为0,4;设函数f(x)是在区间a,b上图象连续的函数,且f(a)f(b)0,则方程f(x)=0在区间a,b上至少有一实根;其中正确命题的序号是(填上所有正确命题的序号)14若双曲线的方程为4x29y2=36,则其实轴长为15已知点A的坐标为(1,0),点B是圆心为C的圆(x1)2+y2=16上一动点,线段AB的垂直平分线交BC与点M,则动点M的轨迹方程为 16若复数是纯虚数,则的值为 .【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力17命题:“xR,都有x31”的否定形式为18双曲线x2my2=1(m0)的实轴长是虚轴长的2倍,则m的值为三、解答题19如图,椭圆C: +=1(ab0)的离心率e=,且椭圆C的短轴长为2()求椭圆C的方程;()设P,M,N椭圆C上的三个动点(i)若直线MN过点D(0,),且P点是椭圆C的上顶点,求PMN面积的最大值;(ii)试探究:是否存在PMN是以O为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由20在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为cos()=1,M,N分别为C与x轴,y轴的交点(1)写出C的直角坐标方程,并求M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程21甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛现已比赛了4场,且甲篮球队胜3场已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为()求甲队分别以4:2,4:3获胜的概率;()设X表示决出冠军时比赛的场数,求X的分布列及数学期望22已知命题p:“存在实数a,使直线x+ay2=0与圆x2+y2=1有公共点”,命题q:“存在实数a,使点(a,1)在椭圆内部”,若命题“p且q”是真命题,求实数a的取值范围23(本题12分)已知数列的首项,通项(,为常数),且成等差数列,求:(1)的值;(2)数列前项和的公式.24已知p:“直线x+ym=0与圆(x1)2+y2=1相交”;q:“方程x2x+m4=0的两根异号”若pq为真,p为真,求实数m的取值范围江安县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】试题分析:所以函数为奇函数,且为增函数.B为偶函数,C定义域与不相同,D为非奇非偶函数,故选A.考点:函数的单调性与奇偶性2 【答案】D【解析】解:若a=0,则函数f(x)=3x2+1,有两个零点,不满足条件若a0,函数的f(x)的导数f(x)=6ax26x=6ax(x),若 f(x)存在唯一的零点x0,且x00,若a0,由f(x)0得x或x0,此时函数单调递增,由f(x)0得0x,此时函数单调递减,故函数在x=0处取得极大值f(0)=10,在x=处取得极小值f(),若x00,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件若a0,由f(x)0得x0,此时函数递增,由f(x)0得x或x0,此时函数单调递减,即函数在x=0处取得极大值f(0)=10,在x=处取得极小值f(),若存在唯一的零点x0,且x00,则f()0,即2a()33()2+10,()21,即10,解得a1,故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键注意分类讨论3 【答案】B【解析】试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系,直线系在可行域内的两个临界点分别为和,当直线过点时,当直线过点时,即的取值范围为,所以的最小值为.故本题正确答案为B.考点:线性规划约束条件中关于最值的计算.4 【答案】C【解析】解:由an+1=an+2n,得an+1an=2n,又a1=1,a5=(a5a4)+(a4a3)+(a3a2)+(a2a1)+a1=2(4+3+2+1)+1=21故选:C【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题5 【答案】A【解析】解:若a=0,则z=2i(1+i)=22i,点M在第四象限,是充分条件,若点M在第四象限,则z=(a+2)+(a2)i,推出2a2,推不出a=0,不是必要条件;故选:A【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题6 【答案】B【解析】解:ABC是锐角三角形,A+B,AB,sinAsin(B)=cosB,sinAcosB0,同理可得sinAcosC0,点P在第二象限故选:B7 【答案】B【解析】因为的展开式中项系数是,所以,解得,故选A8 【答案】A【解析】解:设AB的中点为C,则因为,所以|OC|AC|,因为|OC|=,|AC|2=1|OC|2,所以2()21,所以a1或a1,因为1,所以a,所以实数a的取值范围是,故选:A【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题9 【答案】B【解析】试题分析:由,即整式的值与函数的值符号相反,当时,;当时,结合图象即得考点:1、函数的单调性;2、函数的奇偶性;3、不等式.10【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2圆心到直线的距离为:,所以直线与圆相交。又圆心不在直线上,所以直线不过圆心。故答案为:D11【答案】B【解析】12【答案】B考点:函数的奇偶性与单调性【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于轴对称,单调性在轴两侧相反,即在时单调递增,当时,函数单调递减.结合和对称性,可知,再结合函数的单调性,结合图象就可以求得最后的解集.1二、填空题13【答案】 【解析】解:函数y=|x|,(xR)与函数,(x0)的定义域不同,它们不表示同一个函数;错;奇函数y=,它的图象不通过直角坐标系的原点;故错;函数y=3(x1)2的图象可由y=3x2的图象向右平移1个单位得到;正确;若函数f(x)的定义域为0,2,则函数f(2x)的定义域由02x2,0x1,它的定义域为:0,1;故错;设函数f(x)是在区间ab上图象连续的函数,且f(a)f(b)0,则方程f(x)=0在区间a,b上至少有一实根故正确;故答案为:14【答案】6 【解析】解:双曲线的方程为4x29y2=36,即为:=1,可得a=3,则双曲线的实轴长为2a=6故答案为:6【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题15【答案】=1【解析】解:由题意得,圆心C(1,0),半径等于4,连接MA,则|MA|=|MB|,|MC|+|MA|=|MC|+|MB|=|BC|=4|AC|=2,故点M的轨迹是:以A、C为焦点的椭圆,2a=4,即有a=2,c=1,b=,椭圆的方程为=1故答案为: =1【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题16【答案】【解析】由题意知,且,所以,则.17【答案】x0R,都有x031 【解析】解:因为全称命题的否定是特称命题所以,命题:“xR,都有x31”的否定形式为:命题:“x0R,都有x031”故答案为:x0R,都有x031【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查18【答案】4 【解析】解:双曲线x2my2=1化为x2=1,a2=1,b2=,实轴长是虚轴长的2倍,2a=22b,化为a2=4b2,即1=,解得m=4故答案为:4【点评】熟练掌握双曲线的标准方程及实轴、虚轴的定义是解题的关键三、解答题19【答案】 【解析】解:()由题意得解得a=2,b=1,所以椭圆方程为()(i)由已知,直线MN的斜率存在,设直线MN方程为y=kx,M(x1,y1),N(x2,y2)由得(1+4k2)x24kx3=0,x1+x2=,x1x2=,又 所以SPMN=|PD|x1x2|= 令t=,则t,k2=所以SPMN=,令h(t)=,t,+),则h(t)=1=0,所以h(t)在,+),单调递增,则t=,即k=0时,h(t)的最小值,为h()=,所以PMN面积的最大值为 (ii)假设存在PMN是以O为中心的等边三角形(1)当P在y轴上时,P的坐标为(0,1),则M,N关于y轴对称,MN的中点Q在y轴上又O为PMN的中心,所以,可知Q(0,),M(,),N(,)从而|MN|=,|PM|=,|MN|PM|,与PMN为等边三角形矛盾(2)当P在x轴上时,同理可知,|MN|PM|,与PMN为等边三角形矛盾 (3)当P不在坐标轴时,设P(x0,y0),MN的中点为Q,则kOP=,又O为PMN的中心,则,可知设M(x1,y1),N(x2,y2),则x1+x2=2xQ=x0,y1+y2=2yQ=y0,又x12+4y12=4,x22+4y22=4,两式相减得kMN=,从而kMN= 所以kOPkMN=()=1,所以OP与MN不垂直,与等边PMN矛盾 综上所述,不存在PMN是以O为中心的等边三角形【点评】本小题考查点到直线的距离公式、椭圆的性质、直线与椭圆的位置关系等基础知识,考查运算求解能力、推理论证能力、分析解决问题能力,考查函数与方程思想、数形结合思想、特殊与一般思想、化归与转化思想20【答案】 【解析】解:()由从而C的直角坐标方程为即=0时,=2,所以M(2,0)()M点的直角坐标为(2,0)N点的直角坐标为所以P点的直角坐标为,则P点的极坐标为,所以直线OP的极坐标方程为,(,+)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化21【答案】 【解析】解:()设甲队以4:2,4:3获胜的事件分别为A,B,甲队第5,6场获胜的概率均为,第7场获胜的概率为,甲队以4:2,4:3获胜的概率分别为和()随机变量X的可能取值为5,6,7,P(X=6)=,P(X=7)=,随机变量X的分布列为 X 5 6 7p【点评】本题考查离散型随机变量的分布列,期望的求法,独立重复试验概率的乘法公式的应用,考查分析问题解决问题的能力22【答案】 【解析】解:直线x+ay2=0与圆x2+y2=1有公共点1a21,即a1或a1,命题p为真命题时,a1或a1;点(a,1)在椭圆内部,命题q为真命题时,2a2,由复合命题真值表知:若命题“p且q”是真命题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 改编舟过安仁500字(11篇)
- 词法规则在初中英语阅读理解中的应用研究
- 公交公司春季活动方案
- 伟大的母爱550字10篇
- 公交阅读日活动方案
- 公务文明活动方案
- 公司ktv唱歌活动方案
- 公司一周岁庆活动方案
- 2025至2030年中国修正带带芯行业投资前景及策略咨询报告
- 扶与不扶650字14篇
- 健身房安全知识培训
- 初中地理七下8.3.2《撒哈拉以南非洲》教学设计
- 铝锭应用行业分析
- 策划视频大赛策划方案
- 心衰的中西医结合治疗
- 《如何阅读文献》课件
- 公路技术状况检测与评定-公路技术状况评定
- 高中化学课本实验全(附答案)
- 乡村医生从业管理条例
- 圆锥体积公式的推导(动画演示)
- 北京第八十中学英语新初一分班试卷
评论
0/150
提交评论