临海市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
临海市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
临海市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
临海市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
临海市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

临海市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设等比数列an的公比q=2,前n项和为Sn,则=( )A2B4CD2 将函数f(x)=3sin(2x+)()的图象向右平移(0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则的值不可能是( )ABCD3 九章算术是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等问各得几何”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A钱B钱C钱D钱4 已知等差数列an的前n项和为Sn,若m1,且am1+am+1am2=0,S2m1=38,则m等于( )A38B20C10D95 如图RtOAB是一平面图形的直观图,斜边OB=2,则这个平面图形的面积是( )AB1CD6 直线:(为参数)与圆:(为参数)的位置关系是()A相离 B相切 C相交且过圆心 D相交但不过圆心7 设、是两个不同的平面,l、m为两条不同的直线,命题p:若平面,l,m,则lm;命题q:l,ml,m,则,则下列命题为真命题的是( )Ap或qBp且qCp或qDp且q8 命题“设a、b、cR,若ac2bc2则ab”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A0B1C2D39 函数y=2|x|的定义域为a,b,值域为1,16,当a变动时,函数b=g(a)的图象可以是( )ABCD10函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=( )Aex+1Bex1Cex+1Dex111已知点是双曲线C:左支上一点,是双曲线的左、右两个焦点,且,与两条渐近线相交于,两点(如图),点恰好平分线段,则双曲线的离心率是( )A. B.2 C. D.【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.12四面体 中,截面 是正方形, 则在下列结论中,下列说法错误的是( ) A B C. D异面直线与所成的角为二、填空题13设有一组圆Ck:(xk+1)2+(y3k)2=2k4(kN*)下列四个命题:存在一条定直线与所有的圆均相切;存在一条定直线与所有的圆均相交;存在一条定直线与所有的圆均不相交;所有的圆均不经过原点其中真命题的代号是(写出所有真命题的代号)14在中,角的对边分别为,若,的面积,则边的最小值为_【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力15向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为16设集合A=x|x+m0,B=x|2x4,全集U=R,且(UA)B=,求实数m的取值范围为17在中,已知,则此三角形的最大内角的度数等于_.18以点(1,3)和(5,1)为端点的线段的中垂线的方程是三、解答题19在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题答题终止后,获得的总分决定获奖的等次若甲是被抽到的答题同学,且假设甲答对问题的概率分别为()记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望;()你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由20已知,且(1)求sin,cos的值;(2)若,求sin的值21已知f(x)是定义在R上的奇函数,当x0时,f(x)=()x(1)求当x0时f(x)的解析式;(2)画出函数f(x)在R上的图象;(3)写出它的单调区间22如图,点A是单位圆与x轴正半轴的交点,B(,)(I)若AOB=,求cos+sin的值;(II)设点P为单位圆上的一个动点,点Q满足=+若AOP=2,表示|,并求|的最大值 23如图,在四棱锥 中,底面是平行四边形,为的中点,平面,为 的中点.(1)证明: 平面 ;(2)求直线 与平面所成角的正切值.24如图,已知椭圆C: +y2=1,点B坐标为(0,1),过点B的直线与椭圆C另外一个交点为A,且线段AB的中点E在直线y=x上()求直线AB的方程()若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OMON为定值临海市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:由于q=2,;故选:C2 【答案】C【解析】函数f(x)=sin(2x+)()向右平移个单位,得到g(x)=sin(2x+2),因为两个函数都经过P(0,),所以sin=,又因为,所以=,所以g(x)=sin(2x+2),sin(2)=,所以2=2k+,kZ,此时=k,kZ,或2=2k+,kZ,此时=k,kZ,故选:C【点评】本题考查的知识点是函数y=Asin(x+)的图象变换,三角函数求值,难度中档3 【答案】B【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a2d,ad,a,a+d,a+2d,则由题意可知,a2d+ad=a+a+d+a+2d,即a=6d,又a2d+ad+a+a+d+a+2d=5a=5,a=1,则a2d=a2=故选:B4 【答案】C【解析】解:根据等差数列的性质可得:am1+am+1=2am,则am1+am+1am2=am(2am)=0,解得:am=0或am=2,若am等于0,显然S2m1=(2m1)am=38不成立,故有am=2,S2m1=(2m1)am=4m2=38,解得m=10故选C5 【答案】D【解析】解:RtOAB是一平面图形的直观图,斜边OB=2,直角三角形的直角边长是,直角三角形的面积是,原平面图形的面积是12=2故选D6 【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2圆心到直线的距离为:,所以直线与圆相交。又圆心不在直线上,所以直线不过圆心。故答案为:D7 【答案】 C【解析】解:在长方体ABCDA1B1C1D1中命题p:平面AC为平面,平面A1C1为平面,直线A1D1,和直线AB分别是直线m,l,显然满足,l,m,而m与l异面,故命题p不正确;p正确;命题q:平面AC为平面,平面A1C1为平面,直线A1D1,和直线AB分别是直线m,l,显然满足l,ml,m,而,故命题q不正确;q正确;故选C【点评】此题是个基础题考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力8 【答案】C【解析】解:命题“设a、b、cR,若ac2bc2,则c20,则ab”为真命题;故其逆否命题也为真命题;其逆命题为“设a、b、cR,若ab,则ac2bc2”在c=0时不成立,故为假命题故其否命题也为假命题故原命题及其逆命题、否命题、逆否命题中,真命题的个数为2个故选C【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键9 【答案】B【解析】解:根据选项可知a0a变动时,函数y=2|x|的定义域为a,b,值域为1,16,2|b|=16,b=4故选B【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题10【答案】D【解析】解:函数y=ex的图象关于y轴对称的图象的函数解析式为y=ex,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex的图象关于y轴对称,所以函数f(x)的解析式为y=e(x+1)=ex1即f(x)=ex1故选D11【答案】A. 【解析】12【答案】B【解析】试题分析:因为截面是正方形,所以,则平面平面,所以,由可得,所以A正确;由于可得截面,所以C正确;因为,所以,由,所以是异面直线与所成的角,且为,所以D正确;由上面可知,所以,而,所以,所以B是错误的,故选B. 1考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键.二、填空题13【答案】 【解析】解:根据题意得:圆心(k1,3k),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项正确;考虑两圆的位置关系,圆k:圆心(k1,3k),半径为k2,圆k+1:圆心(k1+1,3(k+1),即(k,3k+3),半径为(k+1)2,两圆的圆心距d=,两圆的半径之差Rr=(k+1)2k2=2k+,任取k=1或2时,(Rrd),Ck含于Ck+1之中,选项错误;若k取无穷大,则可以认为所有直线都与圆相交,选项错误;将(0,0)带入圆的方程,则有(k+1)2+9k2=2k4,即10k22k+1=2k4(kN*),因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项正确则真命题的代号是故答案为:【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题14【答案】15【答案】 【解析】解:不等式组的可行域为:由题意,A(1,1),区域的面积为=(x3)=,由,可得可行域的面积为:1=,坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为: =故答案为:【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积16【答案】m2 【解析】解:集合A=x|x+m0=x|xm,全集U=R,所以CUA=x|xm,又B=x|2x4,且(UA)B=,所以有m2,所以m2故答案为m217【答案】【解析】考点:解三角形【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据,根据正弦定理,可设,即可利用余弦定理求解最大角的余弦,熟记正弦、余弦定理的公式是解答的关键18【答案】xy2=0 【解析】解:直线AB的斜率 kAB=1,所以线段AB的中垂线得斜率k=1,又线段AB的中点为(3,1),所以线段AB的中垂线得方程为y1=x3即xy2=0,故答案为xy2=0【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程三、解答题19【答案】【解析】【知识点】随机变量的期望与方差随机变量的分布列【试题解析】()的可能取值为,分布列为:()设先回答问题,再回答问题得分为随机变量,则的可能取值为,分布列为:应先回答所得分的期望值较高20【答案】 【解析】解:(1)将sin+cos=两边平方得:(sin+cos)2=sin2+2sincos+cos2=1+sin=,sin=,(,),cos=;(2)(,),(0,),+(,),sin(+)=0,+(,),cos(+)=,则sin=sin=sin(+)coscos(+)sin=()()=+=【点评】此题考查了两角和与差的正弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键21【答案】 【解析】解:(1)若 x0,则x0(1分)当x0时,f(x)=()xf(x)=()xf(x)是定义在R上的奇函数,f(x)=f(x),f(x)=()x=2x(4分)(2)(x)是定义在R上的奇函数,当x=0时,f(x)=0,f(x)=(7分)函数图象如下图所示:(3)由(2)中图象可得:f(x)的减区间为(,+)(11分)(用R表示扣1分)无增区间(12分)【点评】本题考查的知识点是函数的奇偶性,函数的解析式,函数的图象,分段函数的应用,函数的单调性,难度中档22【答案】 【解析】 解:()点A是单位圆与x轴正半轴的交点,B(,)可得sin=,cos=,cos+sin=()因为P(cos2,sin2),A(1,0)所以=(1+cos2,sin2),所以=2|cos|,因为,所以=2|cos|,|的最大值【点评】本题考查三角函数的定义的应用,三角函数最值的求法,考查计算能力23【答案】(1)证明见解析;(2)【解析】111考点:直线与平面垂直的判定;直线与平面所成的角.【方法点晴】本题主要考查了直线与平面垂直的判定、直线与平面所成角的求解,其中解答中涉及到直线与平面垂直的判定定理与性质定理、直线与平面所成角的求解等知识点综合考查,解答中熟记直线与平面垂直的判定定理和直线与平面所成角的定义,找出线面角是解答的关键,注重考查了学生的空间想象能力和推理与论证能力,属于中档试题.24【答案】 【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论