藁城区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
藁城区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
藁城区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
藁城区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
藁城区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

藁城区三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P,直线PF1(F1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )ABCD2 某几何体的三视图如图所示,则该几何体的表面积为( )A12+15B13+12C18+12D21+153 若ab0,则下列不等式不成立是( )ABC|a|b|Da2b24 已知函数满足,且,分别是上的偶函数和奇函数,若使得不等式恒成立,则实数的取值范围是( )A B C D5 设,在约束条件下,目标函数的最大值小于2,则的取值范围为( )A B C. D6 已知数列满足().若数列的最大项和最小项分别为和,则( )A B C D7 若命题p:x0R,sinx0=1;命题q:xR,x2+10,则下列结论正确的是( )Ap为假命题Bq为假命题Cpq为假命题Dpq真命题8 执行如图所示的程序框图,若输入的分别为0,1,则输出的()A4 B16 C27 D369 设a0,b0,若是5a与5b的等比中项,则+的最小值为( )A8B4C1D10设偶函数f(x)在0,+)单调递增,则使得f(x)f(2x1)成立的x的取值范围是( )A(,1)B(,)(1,+)C(,)D(,)(,+)11如图所示,在平行六面体ABCDA1B1C1D1中,点E为上底面对角线A1C1的中点,若=+x+y,则( ) Ax=Bx=Cx=Dx=12在复平面内,复数(4+5i)i(i为虚数单位)的共轭复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限二、填空题13抛物线y2=4x上一点M与该抛物线的焦点F的距离|MF|=4,则点M的横坐标x=14已知函数为定义在区间2a,3a1上的奇函数,则a+b=15设双曲线=1,F1,F2是其两个焦点,点M在双曲线上若F1MF2=90,则F1MF2的面积是16函数y=lgx的定义域为17如图是一个正方体的展开图,在原正方体中直线AB与CD的位置关系是18向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为三、解答题19设不等式的解集为.(1)求集合;(2)若,试比较与的大小。20某校举办学生综合素质大赛,对该校学生进行综合素质测试,学校对测试成绩(10分制)大于或等于7.5的学生颁发荣誉证书,现从A和B两班中各随机抽5名学生进行抽查,其成绩记录如下:A777.599.5B6x8.58.5y由于表格被污损,数据x,y看不清,统计人员只记得xy,且A和B两班被抽查的5名学生成绩的平均值相等,方差也相等()若从B班被抽查的5名学生中任抽取2名学生,求被抽取2学生成绩都颁发了荣誉证书的概率;()从被抽查的10名任取3名,X表示抽取的学生中获得荣誉证书的人数,求X的期望21(本小题满分10分)选修41:几何证明选讲如图,AB是O的直径,AC是O的切线,BC交O于E,过E的切线与AC交于D.(1)求证:CDDA;(2)若CE1,AB,求DE的长22(本小题满分12分)已知函数.(1)若函数在定义域上是单调增函数,求的最小值;(2)若方程在区间上有两个不同的实根,求的取值范围.23若an的前n项和为Sn,点(n,Sn)均在函数y=的图象上(1)求数列an的通项公式;(2)设,Tn是数列bn的前n项和,求:使得对所有nN*都成立的最大正整数m24在ABC中,内角A,B,C所对的边分别是a,b,c,已知tanA=,c=()求;()若三角形ABC的面积为,求角C藁城区三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:设F2为椭圆的右焦点由题意可得:圆与椭圆交于P,并且直线PF1(F1为椭圆的左焦点)是该圆的切线,所以点P是切点,所以PF2=c并且PF1PF2又因为F1F2=2c,所以PF1F2=30,所以根据椭圆的定义可得|PF1|+|PF2|=2a,所以|PF2|=2ac所以2ac=,所以e=故选D【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义2 【答案】C【解析】解:由三视图知几何体为半个圆锥,圆锥的底面圆半径为1,高为2,圆锥的母线长为5,几何体的表面积S=42+45+83=18+12故选:C3 【答案】A【解析】解:ab0,ab0,|a|b|,a2b2,即,可知:B,C,D都正确,因此A不正确故选:A【点评】本题考查了不等式的基本性质,属于基础题4 【答案】B【解析】试题分析:因为函数满足,且分别是上的偶函数和奇函数, 使得不等式恒成立, 即恒成立, , 设,则函数在上单调递增, 此时不等式,当且仅当,即时, 取等号,故选B. 考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题不等式恒成立问题常见方法:分离参数恒成立(即可)或恒成立(即可);数形结合;讨论最值或恒成立;讨论参数 .本题是利用方法求得的最大值的. 5 【答案】A【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线截距为,作,向可行域内平移,越向上,则的值越大,从而可得当直线直线过点时取最大值,可求得点的坐标可求的最大值,然后由解不等式可求的范围. 6 【答案】D【解析】试题分析:数列,当时,,即;当时,即.因此数列先增后减,为最大项,,最小项为,的值为故选D.考点:数列的函数特性.7 【答案】A【解析】解:时,sinx0=1;x0R,sinx0=1;命题p是真命题;由x2+10得x21,显然不成立;命题q是假命题;p为假命题,q为真命题,pq为真命题,pq为假命题;A正确故选A【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对R满足x20,命题p,pq,pq的真假和命题p,q真假的关系8 【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。故答案为:D9 【答案】B【解析】解:是5a与5b的等比中项,5a5b=()2=5,即5a+b=5,则a+b=1,则+=(+)(a+b)=1+1+2+2=2+2=4,当且仅当=,即a=b=时,取等号,即+的最小值为4,故选:B【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意1的代换10【答案】A【解析】解:因为f(x)为偶函数,所以f(x)f(2x1)可化为f(|x|)f(|2x1|)又f(x)在区间0,+)上单调递增,所以|x|2x1|,即(2x1)2x2,解得x1,所以x的取值范围是(,1),故选:A11【答案】A【解析】解:根据题意,得;=+(+)=+=+,又=+x+y,x=,y=,故选:A【点评】本题考查了空间向量的应用问题,是基础题目12【答案】B【解析】解:(4+5i)i=54i,复数(4+5i)i的共轭复数为:5+4i,在复平面内,复数(4+5i)i的共轭复数对应的点的坐标为:(5,4),位于第二象限故选:B二、填空题13【答案】3 【解析】解:抛物线y2=4x=2px,p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,|MF|=4=x+=4,x=3,故答案为:3【点评】活用抛物线的定义是解决抛物线问题最基本的方法抛物线上的点到焦点的距离,叫焦半径到焦点的距离常转化为到准线的距离求解14【答案】2 【解析】解:f(x)是定义在2a,3a1上奇函数,定义域关于原点对称,即2a+3a1=0,a=1,函数为奇函数,f(x)=,即b2x1=b+2x,b=1即a+b=2,故答案为:215【答案】9 【解析】解:双曲线=1的a=2,b=3,可得c2=a2+b2=13,又|MF1|MF2|=2a=4,|F1F2|=2c=2,F1MF2=90,在F1AF2中,由勾股定理得:|F1F2|2=|MF1|2+|MF2|2=(|MF1|MF2|)2+2|MF1|MF2|,即4c2=4a2+2|MF1|MF2|,可得|MF1|MF2|=2b2=18,即有F1MF2的面积S=|MF1|MF2|sinF1MF2=181=9故答案为:9【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与a、b、c之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题16【答案】x|x0 【解析】解:对数函数y=lgx的定义域为:x|x0故答案为:x|x0【点评】本题考查基本函数的定义域的求法17【答案】异面 【解析】解:把展开图还原原正方体如图,在原正方体中直线AB与CD的位置关系是异面故答案为:异面18【答案】 【解析】解:不等式组的可行域为:由题意,A(1,1),区域的面积为=(x3)=,由,可得可行域的面积为:1=,坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为: =故答案为:【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积三、解答题19【答案】(1)(2)【解析】(1)由所以(2)由(1)和,所以故20【答案】 【解析】解:()(7+7+7.5+9+9.5)=8,=(6+x+8.5+8.5+y),x+y=17,=,得(x8)2+(y8)2=1,由解得或,xy,x=8,y=9,记“2名学生都颁发了荣誉证书”为事件C,则事件C包含个基本事件,共有个基本事件,P(C)=,即2名学生颁发了荣誉证书的概率为()由题意知X所有可能的取值为0,1,2,3,P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=,EX=【点评】本题考查概率的求法,考查离散型随机变量的方差的求法,是中档题,解题时要认真审题,注意平均值和方差的计算和应用21【答案】【解析】解:(1)证明:如图,连接AE,AB是O的直径,AC,DE均为O的切线,AECAEB90,DAEDEAB,DADE.C90B90DEADEC,DCDE,CDDA.(2)CA是O的切线,AB是直径,CAB90,由勾股定理得CA2CB2AB2,又CA2CECB,CE1,AB,1CBCB22,即CB2CB20,解得CB2,CA2122,CA.由(1)知DECA,所以DE的长为.22【答案】(1);(2).1111【解析】则对恒成立,即对恒成立,而当时,.若函数在上递减,则对恒成立,即对恒成立,这是不可能的.综上,.的最小值为1. 1(2)由,得,即,令,得的根为1,考点:1、利用导数研究函数的单调性;2、函数零点问题及不等式恒成立问题.【方法点晴】本题主要考查利用导数研究函数的单调性、函数零点问题及不等式恒成立问题,属于难题不等式恒成立问题常见方法:分离参数恒成立(即可)或恒成(即可);数形结合;讨论最值或恒成立;讨论参数.本题(2)就是先将问题转化为不等式恒成立问题后再利用求得的最小值的.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.23【答案】 【解析】解:(1)由题意知:Sn=n2n,当n2时,an=SnSn1=3n2,当n=1时,a1=1,适合上式,则an=3n2;(2)根据题意得:bn=,Tn=b1+b2+bn=1+=1,Tn在nN*上是增函数,(Tn)min=T1=,要使Tn对所有nN*都成立,只需,即m15,则最大的正整数m为1424【答案】 【解析】解:()由题意知,tanA=,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论