




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
五常市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 极坐标系中,点P,Q分别是曲线C1:=1与曲线C2:=2上任意两点,则|PQ|的最小值为( )A1BCD22 设函数f(x)=,f(2)+f(log210)=( )A11B8C5D23 已知在平面直角坐标系中,点,().命题:若存在点在圆上,使得,则;命题:函数在区间内没有零点.下列命题为真命题的是( )A B C D4 已知点A(0,1),B(2,3)C(1,2),D(1,5),则向量在方向上的投影为( )ABCD5 等差数列an中,a1+a5=10,a4=7,则数列an的公差为( )A1B2C3D46 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )A. B.C. D. 【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力7 已知两条直线,其中为实数,当这两条直线的夹角在内变动时,的取值范围是( )A B C D8 “ab,c0”是“acbc”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9 函数y=2x2e|x|在2,2的图象大致为( )ABCD10已知集合,若,则( )A B C或 D或11等于( )A B C D12已知集合A,B,C中,AB,AC,若B=0,1,2,3,C=0,2,4,则A的子集最多有( )A2个B4个C6个D8个二、填空题13甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为 14下列四个命题:两个相交平面有不在同一直线上的三个公交点经过空间任意三点有且只有一个平面过两平行直线有且只有一个平面在空间两两相交的三条直线必共面其中正确命题的序号是15设,在区间上任取一个实数,曲线在点处的切线斜率为,则随机事件“”的概率为_.16若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在( )A第一象限 B第二象限 C第三象限 D第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力17已知f(x+1)=f(x1),f(x)=f(2x),方程f(x)=0在0,1内只有一个根x=,则f(x)=0在区间0,2016内根的个数18如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率是三、解答题19某市出租车的计价标准是4km以内10元(含4km),超过4km且不超过18km的部分1.5元/km,超出18km的部分2元/km(1)如果不计等待时间的费用,建立车费y元与行车里程x km的函数关系式;(2)如果某人乘车行驶了30km,他要付多少车费?20(本题满分14分)在中,角,所对的边分别为,已知(1)求角的大小; (2)若,求的取值范围【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力21ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a()求;()若c2=b2+a2,求B22如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望 。23某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11()求该校报考飞行员的总人数;()若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X表示体重超过60kg的学生人数,求X的数学期望与方差24已知函数f(x)=1+(2x2)(1)用分段函数的形式表示函数;(2)画出该函数的图象;(3)写出该函数的值域五常市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:极坐标系中,点P,Q分别是曲线C1:=1与曲线C2:=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1故选:A【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查2 【答案】B【解析】解:f(x)=,f(2)=1+log24=1+2=3,=5,f(2)+f(log210)=3+5=8故选:B【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用3 【答案】A【解析】试题分析:命题:,则以为直径的圆必与圆有公共点,所以,解得,因此,命题是真命题.命题:函数,,且在上是连续不断的曲线,所以函数在区间内有零点,因此,命题是假命题.因此只有为真命题故选A考点:复合命题的真假【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点满足,因此在以为直径的圆上,又点在圆上,因此为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.4 【答案】D【解析】解:;在方向上的投影为=故选D【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算5 【答案】B【解析】解:设数列an的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B6 【答案】B 7 【答案】C【解析】1111试题分析:由直线方程,可得直线的倾斜角为,又因为这两条直线的夹角在,所以直线的倾斜角的取值范围是且,所以直线的斜率为且,即或,故选C.考点:直线的倾斜角与斜率.8 【答案】A【解析】解:由“ab,c0”能推出“acbc”,是充分条件,由“acbc”推不出“ab,c0”不是必要条件,例如a=1,c=1,b=1,显然acbc,但是ab,c0,故选:A【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题9 【答案】D【解析】解:f(x)=y=2x2e|x|,f(x)=2(x)2e|x|=2x2e|x|,故函数为偶函数,当x=2时,y=8e2(0,1),故排除A,B; 当x0,2时,f(x)=y=2x2ex,f(x)=4xex=0有解,故函数y=2x2e|x|在0,2不是单调的,故排除C,故选:D10【答案】D【解析】试题分析:由,集合,又,或,故选D考点:交集及其运算11【答案】D【解析】试题分析:原式考点:余弦的两角和公式.12【答案】B【解析】解:因为B=0,1,2,3,C=0,2,4,且AB,AC;ABC=0,2集合A可能为0,2,即最多有2个元素,故最多有4个子集故选:B二、填空题13【答案】【解析】【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求另外在确定基本事件时,可以看成是有序的,如与不同;有时也可以看成是无序的,如相同(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用求解较好14【答案】 【解析】解:两个相交平面的公交点一定在平面的交线上,故错误;经过空间不共线三点有且只有一个平面,故错误;过两平行直线有且只有一个平面,正确;在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,故正确命题的序号是,故答案为:15【答案】【解析】解析:本题考查几何概率的计算与切线斜率的计算,由得,随机事件“”的概率为16【答案】D【解析】17【答案】2016 【解析】解:f(x)=f(2x),f(x)的图象关于直线x=1对称,即f(1x)=f(1+x)f(x+1)=f(x1),f(x+2)=f(x),即函数f(x)是周期为2的周期函数,方程f(x)=0在0,1内只有一个根x=,由对称性得,f()=f()=0,函数f(x)在一个周期0,2上有2个零点,即函数f(x)在每两个整数之间都有一个零点,f(x)=0在区间0,2016内根的个数为2016,故答案为:201618【答案】 【解析】解:由题意ABE的面积是平行四边形ABCD的一半,由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题三、解答题19【答案】 【解析】解:(1)依题意得:当0x4时,y=10;(2分)当4x18时,y=10+1.5(x4)=1.5x+4当x18时,y=10+1.514+2(x18)=2x5(8分)(9分)(2)x=30,y=2305=55(12分)【点评】本题考查函数模型的建立,考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题20【答案】(1);(2).【解析】21【答案】 【解析】解:()由正弦定理得,sin2AsinB+sinBcos2A=sinA,即sinB(sin2A+cos2A)=sinAsinB=sinA, =()由余弦定理和C2=b2+a2,得cosB=由()知b2=2a2,故c2=(2+)a2,可得cos2B=,又cosB0,故cosB=所以B=45【点评】本题主要考查了正弦定理和余弦定理的应用解题的过程主要是利用了正弦定理和余弦定理对边角问题进行了互化22【答案】【解析】(1)Ai表示事件“甲选择路径Li时,40分钟内赶到火车站”,Bi表示事件“乙选择路径Li时,50分钟内赶到火车站”,i=1,2,用频率估计相应的概率可得P(A1)=0。1+0。2+0。3=0。6,P(A2)=0。1+0。4=0。5,P(A1) P(A2),甲应选择LiP(B1)=0。1+0。2+0。3+0。2=0。8,P(B2)=0。1+0。4+0。4=0。9,P(B2) P(B1),乙应选择L2。(2)A,B分别表示针对()的选择方案,甲、乙在各自允许的时间内赶到火车站,由()知,又由题意知,A,B独立,23【答案】 【解析】(本小题满分12分)解:()设该校报考飞行员的总人数为n,前三个小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海坦思java面试题及答案
- 雷达集训试题及答案
- 创优才智java面试题及答案
- 上海第二工业大学《数学计算方法》2023-2024学年第二学期期末试卷
- 贵州中医药大学时珍学院《医学是什么》2023-2024学年第二学期期末试卷
- 青岛农业大学《结构健康监测及安全评估》2023-2024学年第二学期期末试卷
- 茅台学院《外国文学史(2)》2023-2024学年第二学期期末试卷
- 盐城师范学院《生态文明建设理论与实践前沿》2023-2024学年第二学期期末试卷
- 年产30万吨热轧镀锌板及30万吨超薄热镀锌板新建项目可行性实施报告
- 部编版历史七年级下册 第15课 明朝的统治-课件(内嵌视频)
- 2025年山东省济南市长清区中考二模道德与法治试题(含答案)
- 东南大学强基试题及答案
- 四川电网新建电源并网服务指南(2025年)
- 2025安全月查找身边安全隐患:生产现场实拍隐患图解
- 民航危险品运输分类具有多重危险性的物质物品Dangerou
- 中华护理学会团体标准|2024 针刺伤预防与处理课件
- 2025安全生产月全员安全主题宣讲课件二十六(41ye)
- 江苏省淮安市2022年中考化学真题(解析版)
- 事故隐患内部报告奖励制度
- 2023年山东省夏季普通高中学业水平合格考试会考生物试题及参考答案
- JBT 11699-2013 高处作业吊篮安装、拆卸、使用技术规程
评论
0/150
提交评论