沧源佤族自治县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
沧源佤族自治县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
沧源佤族自治县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
沧源佤族自治县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
沧源佤族自治县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沧源佤族自治县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是( )Ak7Bk6Ck5Dk42 若集合M=y|y=2x,x1,N=x|0,则 NM( )A(11,B(0,1C1,1D(1,23 设f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f(x)的图象可能是( )ABCD4 下列4个命题:命题“若x2x=0,则x=1”的逆否命题为“若x1,则x2x0”;若“p或q”是假命题,则“p且q”是真命题;若p:x(x2)0,q:log2x1,则p是q的充要条件;若命题p:存在xR,使得2xx2,则p:任意xR,均有2xx2;其中正确命题的个数是( )A1个B2个C3个D4个5 某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是()AB8CD6 双曲线E与椭圆C:1有相同焦点,且以E的一个焦点为圆心与双曲线的渐近线相切的圆的面积为,则E的方程为( )A.1 B.1C.y21 D.17 设全集U=1,3,5,7,9,集合A=1,|a5|,9,UA=5,7,则实数a的值是( )A2B8C2或8D2或88 数列an的通项公式为an=n+p,数列bn的通项公式为bn=2n5,设cn=,若在数列cn中c8cn(nN*,n8),则实数p的取值范围是( )A(11,25)B(12,16C(12,17)D16,17)9 已知 m、n 是两条不重合的直线,、是三个互不重合的平面,则下列命题中 正确的是( )A若 m,n,则 mnB若,则 C若m,n,则 mnD若 m,m,则 10已知x,y满足约束条件,使z=ax+y取得最小值的最优解有无数个,则a的值为( )A3B3C1D111设为虚数单位,则()A B C D12与463终边相同的角可以表示为(kZ)( )Ak360+463Bk360+103Ck360+257Dk360257二、填空题13已知点E、F分别在正方体的棱上,且,则面AEF与面ABC所成的二面角的正切值等于 .14函数在区间上递减,则实数的取值范围是 15已知函数,是函数的一个极值点,则实数 16已知向量若,则( )ABC2D【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力17对于映射f:AB,若A中的不同元素有不同的象,且B中的每一个元素都有原象,则称f:AB为一一映射,若存在对应关系,使A到B成为一一映射,则称A到B具有相同的势,给出下列命题:A是奇数集,B是偶数集,则A和B具有相同的势;A是平面直角坐标系内所有点形成的集合,B是复数集,则A和B不具有相同的势;若区间A=(1,1),B=R,则A和B具有相同的势其中正确命题的序号是18如图所示,圆中,弦的长度为,则的值为_【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想三、解答题19已知函数f(x)=ax22lnx()若f(x)在x=e处取得极值,求a的值;()若x(0,e,求f(x)的单调区间;() 设a,g(x)=5+ln,x1,x2(0,e,使得|f(x1)g(x2)|9成立,求a的取值范围 20某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数据如下表:节能意识弱节能意识强总计20至50岁45954大于50岁103646总计5545100(1)由表中数据直观分析,节能意识强弱是否与人的年龄有关?(2)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人?(3)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率21已知数列an满足a1=a,an+1=(nN*)(1)求a2,a3,a4;(2)猜测数列an的通项公式,并用数学归纳法证明22(本小题满分12分)已知过抛物线的焦点,斜率为的直线交抛物线于和()两点,且(I)求该抛物线的方程;(II)如图所示,设为坐标原点,取上不同于的点,以为直径作圆与相交另外一点,求该圆面积的最小值时点的坐标23(1)计算:()0+lne+8+log62+log63;(2)已知向量=(sin,cos),=(2,1),满足,其中(,),求cos的值24已知正项等差an,lga1,lga2,lga4成等差数列,又bn=(1)求证bn为等比数列(2)若bn前3项的和等于,求an的首项a1和公差d沧源佤族自治县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】 C【解析】解:程序在运行过程中各变量值变化如下表: K S 是否继续循环循环前 1 0第一圈 2 2 是第二圈 3 7 是第三圈 4 18 是第四圈 5 41 是第五圈 6 88 否故退出循环的条件应为k5?故答案选C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误2 【答案】B【解析】解:由M中y=2x,x1,得到0y2,即M=(0,2,由N中不等式变形得:(x1)(x+1)0,且x+10,解得:1x1,即N=(1,1,则MN=(0,1,故选:B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键3 【答案】D【解析】解:根据函数与导数的关系:可知,当f(x)0时,函数f(x)单调递增;当f(x)0时,函数f(x)单调递减结合函数y=f(x)的图象可知,当x0时,函数f(x)单调递减,则f(x)0,排除选项A,C当x0时,函数f(x)先单调递增,则f(x)0,排除选项B故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题4 【答案】C【解析】解:命题“若x2x=0,则x=1”的逆否命题为“若x1,则x2x0”,正确;若“p或q”是假命题,则p、q均为假命题,p、q均为真命题,“p且q”是真命题,正确;由p:x(x2)0,得0x2,由q:log2x1,得0x2,则p是q的必要不充分条件,错误;若命题p:存在xR,使得2xx2,则p:任意xR,均有2xx2,正确正确的命题有3个故选:C5 【答案】C【解析】【分析】通过三视图分析出几何体的图形,利用三视图中的数据求出四个面的面积中的最大值【解答】解:由题意可知,几何体的底面是边长为4的正三角形,棱锥的高为4,并且高为侧棱垂直底面三角形的一个顶点的三棱锥,两个垂直底面的侧面面积相等为:8,底面面积为: =4,另一个侧面的面积为: =4,四个面中面积的最大值为4;故选C6 【答案】【解析】选C.可设双曲线E的方程为1,渐近线方程为yx,即bxay0,由题意得E的一个焦点坐标为(,0),圆的半径为1,焦点到渐近线的距离为1.即1,又a2b26,b1,a,E的方程为y21,故选C.7 【答案】D【解析】解:由题意可得3A,|a5|=3,a=2,或a=8,故选 D8 【答案】C【解析】解:当anbn时,cn=an,当anbn时,cn=bn,cn是an,bn中的较小者,an=n+p,an是递减数列,bn=2n5,bn是递增数列,c8cn(n8),c8是cn的最大者,则n=1,2,3,7,8时,cn递增,n=8,9,10,时,cn递减,n=1,2,3,7时,2n5n+p总成立,当n=7时,2757+p,p11,n=9,10,11,时,2n5n+p总成立,当n=9时,2959+p,成立,p25,而c8=a8或c8=b8,若a8b8,即23p8,p16,则c8=a8=p8,p8b7=275,p12,故12p16, 若a8b8,即p8285,p16,c8=b8=23,那么c8c9=a9,即8p9,p17,故16p17,综上,12p17故选:C9 【答案】C【解析】解:对于A,若 m,n,则 m与n相交、平行或者异面;故A错误;对于B,若,则 与可能相交,如墙角;故B错误;对于C,若m,n,根据线面垂直的性质定理得到 mn;故C正确;对于D,若 m,m,则 与可能相交;故D错误;故选C【点评】本题考查了空间线线关系面面关系的判断;熟练的运用相关的定理是关键10【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=ax+y,得y=ax+z,若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时a=1,即a=1若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z,此时目标函数只在C处取得最小值,不满足条件综上a=1故选:D【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键注意要对a进行分类讨论11【答案】C【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C12【答案】C【解析】解:与463终边相同的角可以表示为:k360463,(kZ)即:k360+257,(kZ)故选C【点评】本题考查终边相同的角,是基础题二、填空题13【答案】【解析】延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。14【答案】【解析】试题分析:函数图象开口向上,对称轴为,函数在区间上递减,所以.考点:二次函数图象与性质15【答案】5【解析】试题分析:考点:导数与极值16【答案】A【解析】17【答案】 【解析】解:根据一一映射的定义,集合A=奇数B=偶数,不妨给出对应法则加1则AB是一一映射,故正确;对设Z点的坐标(a,b),则Z点对应复数a+bi,a、bR,复合一一映射的定义,故不正确;对,给出对应法则y=tanx,对于A,B两集合可形成f:AB的一一映射,则A、B具有相同的势;正确故选:【点评】本题借助考查命题的真假判断,考查一一映射的定义,属于基础题型,考查考生对新定义题的理解与应用能力18【答案】三、解答题19【答案】 【解析】解:() f(x)=2ax= 由已知f(e)=2ae=0,解得a=经检验,a=符合题意 () 1)当a0时,f(x)0,f(x)在(0,e上是减函数2)当a0时,若e,即,则f(x)在(0,)上是减函数,在(,e上是增函数;若e,即0a,则f(x)在0,e上是减函数综上所述,当a时,f(x)的减区间是(0,e,当a时,f(x)的减区间是,增区间是()当时,由()知f(x)的最小值是f()=1+lna;易知g(x)在(0,e上的最大值是g(e)=4lna;注意到(1+lna)(4lna)=5+2lna0,故由题设知,解得ae2故a的取值范围是(,e2) 20【答案】 【解析】解(1)因为20至50岁的54人有9人节能意识强,大于50岁的46人有36人节能意识强,与相差较大,所以节能意识强弱与年龄有关(2)由数据可估计在节能意识强的人中,年龄大于50岁的概率约为年龄大于50岁的约有(人)(3)抽取节能意识强的5人中,年龄在20至50岁的(人),年龄大于50岁的51=4人,记这5人分别为a,B1,B2,B3,B4从这5人中任取2人,共有10种不同取法:(a,B1),(a,B2),(a,B3),(a,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),设A表示随机事件“这5人中任取2人,恰有1人年龄在20至50岁”,则A中的基本事件有4种:(a,B1),(a,B2),(a,B3),(a,B4)故所求概率为21【答案】 【解析】解:(1)由an+1=,可得a2=,a3=,a4=(2)猜测an=(nN*)下面用数学归纳法证明:当n=1时,左边=a1=a,右边=a,猜测成立假设当n=k(kN*)时猜测成立,即ak=则当n=k+1时,ak+1=故当n=k+1时,猜测也成立由,可知,对任意nN*都有an=成立22【答案】【解析】【命题意图】本题考查抛物线标准方程、抛物线定义、直线和抛物线位置关系等基础知识,意在考查转化与化归和综合分析问题、解决问题的能力因为,化简得 ,所以,当且仅当即16,时等号成立. 圆的直径,因为64,所以当64即=8时,所以所求圆的面积的最小时,点的坐标为23【答案】 【解析】(本小题满分12分)解析:(1)原式=1+15+2+1=0; (6分)(2)向量=(sin,cos),=(2,1),满足,sin=2cos,(9分)又sin2+cos2+=1,由解得cos2=,(11分)(,),cos= (12分)【点评】本题考查对数运算法则以及三角函数的化简求值,向量共线的应用,考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论