




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
虞城县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若函数的定义域是,则函数的定义域是( )A B C D2 设全集U=MN=1,2,3,4,5,MUN=2,4,则N=( )A1,2,3B1,3,5C1,4,5D2,3,43 若a=ln2,b=5,c=xdx,则a,b,c的大小关系( )AabcBBbacCCbcaDcba4 与命题“若xA,则yA”等价的命题是( )A若xA,则yAB若yA,则xAC若xA,则yAD若yA,则xA5 设向量,满足:|=3,|=4, =0以,的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A3B4C5D66 sin(510)=( )ABCD7 如图,棱长为1的正方体ABCDA1B1C1D1中,M为线段A1B上的动点,则下列结论正确的有( )三棱锥MDCC1的体积为定值 DC1D1MAMD1的最大值为90 AM+MD1的最小值为2ABCD8 数列1,3,6,10,的一个通项公式是( )A B C D9 在正方体中,是线段的中点,若四面体的外接球体积为,则正方体棱长为( )A2 B3 C4 D5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力10命题“xR,使得x21”的否定是( )AxR,都有x21 BxR,使得x21CxR,使得x21DxR,都有x1或x111等比数列的前n项,前2n项,前3n项的和分别为A,B,C,则( )AB2=ACBA+C=2BCB(BA)=A(CA)DB(BA)=C(CA)12已知a=5,b=log2,c=log5,则( )AbcaBabcCacbDbac二、填空题13已知随机变量N(2,2),若P(4)=0.4,则P(0)=14已知等比数列an是递增数列,Sn是an的前n项和若a1,a3是方程x25x+4=0的两个根,则S6= 15设直线系M:xcos+(y2)sin=1(02),对于下列四个命题:AM中所有直线均经过一个定点B存在定点P不在M中的任一条直线上C对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上DM中的直线所能围成的正三角形面积都相等其中真命题的代号是(写出所有真命题的代号)16有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是_元17已知z,为复数,i为虚数单位,(1+3i)z为纯虚数,=,且|=5,则复数=18抛物线y2=6x,过点P(4,1)引一条弦,使它恰好被P点平分,则该弦所在的直线方程为三、解答题19如图,平面ABB1A1为圆柱OO1的轴截面,点C为底面圆周上异于A,B的任意一点()求证:BC平面A1AC;()若D为AC的中点,求证:A1D平面O1BC20已知数列a1,a2,a30,其中a1,a2,a10,是首项为1,公差为1的等差数列;列a10,a11,a20,是公差为d的等差数列;a20,a21,a30,是公差为d2的等差数列(d0)(1)若a20=40,求d;(2)试写出a30关于d的关系式,并求a30的取值范围;(3)续写已知数列,使得a30,a31,a40,是公差为d3的等差数列,依此类推,把已知数列推广为无穷数列提出同(2)类似的问题(2)应当作为特例),并进行研究,你能得到什么样的结论?21在ABC中,角A,B,C所对的边分别为a,b,c已知b2+c2=a2+bc()求A的大小;()如果cosB=,b=2,求a的值22已知f(x)=x3+3ax2+bx在x=1时有极值为0(1)求常数 a,b的值; (2)求f(x)在2,的最值23某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x年后游艇的盈利为y万元(1)写出y与x之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?24某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11()求该校报考飞行员的总人数;()若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X表示体重超过60kg的学生人数,求X的数学期望与方差虞城县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B 【解析】2 【答案】B【解析】解:全集U=MN=1,2,3,4,5,MCuN=2,4,集合M,N对应的韦恩图为所以N=1,3,5故选B3 【答案】C【解析】解: a=ln2lne即,b=5=,c=xdx=,a,b,c的大小关系为:bca故选:C【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题4 【答案】D【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可与命题“若xA,则yA”等价的命题是若yA,则xA故选D5 【答案】B【解析】解:向量ab=0,此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现故选B【点评】本题主要考查了直线与圆的位置关系可采用数形结合结合的方法较为直观6 【答案】C【解析】解:sin(510)=sin(150)=sin150=sin30=,故选:C7 【答案】A【解析】解:A1B平面DCC1D1,线段A1B上的点M到平面DCC1D1的距离都为1,又DCC1的面积为定值,因此三棱锥MDCC1的体积V=为定值,故正确A1D1DC1,A1BDC1,DC1面A1BCD1,D1P面A1BCD1,DC1D1P,故正确当0A1P时,在AD1M中,利用余弦定理可得APD1为钝角,故不正确;将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,在D1A1A中,D1A1A=135,利用余弦定理解三角形得AD1=2,故不正确因此只有正确故选:A8 【答案】C【解析】试题分析:可采用排除法,令和,验证选项,只有,使得,故选C考点:数列的通项公式9 【答案】C10【答案】D【解析】解:命题是特称命题,则命题的否定是xR,都有x1或x1,故选:D【点评】本题主要考查含有量词的命题的否定,比较基础11【答案】C【解析】解:若公比q=1,则B,C成立;故排除A,D;若公比q1,则A=Sn=,B=S2n=,C=S3n=,B(BA)=()=(1qn)(1qn)(1+qn)A(CA)=()=(1qn)(1qn)(1+qn);故B(BA)=A(CA);故选:C【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力12【答案】C【解析】解:a=51,b=log2log5=c0,acb故选:C二、填空题13【答案】0.6 【解析】解:随机变量服从正态分布N(2,2),曲线关于x=2对称,P(0)=P(4)=1P(4)=0.6,故答案为:0.6【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题14【答案】63【解析】解:解方程x25x+4=0,得x1=1,x2=4因为数列an是递增数列,且a1,a3是方程x25x+4=0的两个根,所以a1=1,a3=4设等比数列an的公比为q,则,所以q=2则故答案为63【点评】本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题15【答案】BC【解析】【分析】验证发现,直线系M:xcos+(y2)sin=1(02)表示圆x2+(y2)2=1的切线的集合,AM中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标C对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,DM中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出【解答】解:因为点(0,2)到直线系M:xcos+(y2)sin=1(02)中每条直线的距离d=1,直线系M:xcos+(y2)sin=1(02)表示圆x2+(y2)2=1的切线的集合,A由于直线系表示圆x2+(y2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上,故C正确;D如下图,M中的直线所能围成的正三角形有两类,其一是如ABB型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确故答案为:BC16【答案】1464【解析】【知识点】函数模型及其应用【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,房间C用涂料2,即最低的涂料总费用是元。故答案为:146417【答案】(7i) 【解析】解:设z=a+bi(a,bR),(1+3i)z=(1+3i)(a+bi)=a3b+(3a+b)i为纯虚数,又=,|=,把a=3b代入化为b2=25,解得b=5,a=15=(7i)故答案为(7i)【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出18【答案】3xy11=0 【解析】解:设过点P(4,1)的直线与抛物线的交点为A(x1,y1),B(x2,y2),即有y12=6x1,y22=6x2,相减可得,(y1y2)(y1+y2)=6(x1x2),即有kAB=3,则直线方程为y1=3(x4),即为3xy11=0将直线y=3x11代入抛物线的方程,可得9x272x+121=0,判别式为722491210,故所求直线为3xy11=0故答案为:3xy11=0三、解答题19【答案】 【解析】证明:()因为AB为圆O的直径,点C为圆O上的任意一点BCAC 又圆柱OO1中,AA1底面圆O,AA1BC,即BCAA1 而AA1AC=ABC平面A1AC ()取BC中点E,连结DE、O1E,D为AC的中点ABC中,DEAB,且DE=AB 又圆柱OO1中,A1O1AB,且DEA1O1,DE=A1O1A1DEO1为平行四边形 A1DEO1 而A1D平面O1BC,EO1平面O1BCA1D平面O1BC 【点评】本题主要考查直线与直线、直线与平面、平面与平面的位置关系;考查学生的空间想象能力及推理论证能力20【答案】 【解析】解:(1)a10=1+9=10a20=10+10d=40,d=3(2)a30=a20+10d2=10(1+d+d2)(d0),a30=10,当d(,0)(0,+)时,a307.5,+)(3)所给数列可推广为无穷数列an,其中a1,a2,a10是首项为1,公差为1的等差数列,当n1时,数列a10n,a10n+1,a10(n+1)是公差为dn的等差数列研究的问题可以是:试写出a10(n+1)关于d的关系式,并求a10(n+1)的取值范围研究的结论可以是:由a40=a30+10d3=10(1+d+d2+d3),依此类推可得a10(n+1)=10(1+d+dn)=当d0时,a10(n+1)的取值范围为(10,+)等【点评】此题考查学生灵活运用等差数列的性质解决实际问题,会根据特例总结归纳出一般性的规律,是一道中档题21【答案】 【解析】解:()b2+c2=a2+bc,即b2+c2a2=bc,cosA=,又A(0,),A=;()cosB=,B(0,),sinB=,由正弦定理=,得a=3【点评】此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键22【答案】 【解析】解:(1)f(x)=x3+3ax2+bx,f(x)=3x2+6ax+b,又f(x)在x=1时有极值0,f(1)=0且f(1)=0,即36a+b=0且1+3ab=0,解得:a=,b=1 经检验,合题意(2)由(1)得f(x)=3x2+4x+1,令f(x)=0得x=或x=1,又f(2)=2,f()=,f(1)=0,f()=,f(x)max=0,f(x)min=223【答案】 【解析】解:(1)(xN*)6(2)盈利额为当且仅当即x=7时,上式取到等号
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025商业办公装修合同协议范本
- 2025艺人经纪合同范本(与经纪人签订)
- 2025合作协议 合同范本
- 2025二手店面交易合同模板
- 2025企业茶叶批发合同
- 湖南省湘一名校联盟2024-2025学年高一下学期4月期中联考政治试题(原卷版)
- 基础护理皮试说课
- 超声护理方案
- 酒店安全知识培训
- 大一自我鉴定总结模版
- DB37 5155-2019 公共建筑节能设计标准
- 2025年河北省职业院校高职组“食品安全与质量检测”技能大赛参考试题库(含答案)
- 3、2024广西专业技术人员继续教育公需科目参考答案(99分)
- 中国血管性认知障碍诊治指南(2024版)解读
- 康复治疗技术-言语康复
- 闯关迷宫课件教学课件
- 浙江省台州市2023-2024学年六年级上学期语文期末试卷(含答案)
- 统编版四年级下册语文第七单元教学设计(含单元备课设计方案)
- 劳务挂靠合同范本(2篇)
- 体育-小学田径水平二(三年级)田径单元-折返跑教学设计
- 踝泵运动健康宣教课件
评论
0/150
提交评论