




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷泸县外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知M=(x,y)|y=2x,N=(x,y)|y=a,若MN=,则实数a的取值范围为( )A(,1)B(,1C(,0)D(,02 已知是ABC的一个内角,tan=,则cos(+)等于( )ABCD3 已知在平面直角坐标系中,点,().命题:若存在点在圆上,使得,则;命题:函数在区间内没有零点.下列命题为真命题的是( )A B C D4 在中,、分别为角、所对的边,若,则此三角形的形状一定是( )A等腰直角B等腰或直角C等腰D直角5 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是()A BC D6 某个几何体的三视图如图所示,该几何体的表面积为9214,则该几何体的体积为( )A8020B4020C6010D80107 在平面直角坐标系中,向量(1,2),(2,m),若O,A,B三点能构成三角形,则()A B C D8 下列函数中,在其定义域内既是奇函数又是减函数的是( )Ay=|x|(xR)By=(x0)Cy=x(xR)Dy=x3(xR)9 已知命题和命题,若为真命题,则下面结论正确的是( )A是真命题 B是真命题 C是真命题 D是真命题10已知函数f(x)=ax1+logax在区间1,2上的最大值和最小值之和为a,则实数a为( )ABC2D411在等比数列中,前项和为,若数列也是等比数列,则等于( )ABCD12设集合A1,2,3,B4,5,Mx|xab,aA,bB,则M中元素的个数为()。A3B4C5D6二、填空题13正方体ABCDA1B1C1D1中,平面AB1D1和平面BC1D的位置关系为14已知函数是定义在R上的奇函数,且当时,,则在R上的解析式为 15给出下列命题:把函数y=sin(x)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin(2x);若,是第一象限角且,则coscos;x=是函数y=cos(2x+)的一条对称轴;函数y=4sin(2x+)与函数y=4cos(2x)相同;y=2sin(2x)在是增函数;则正确命题的序号16袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为17设复数z满足z(23i)=6+4i(i为虚数单位),则z的模为18若函数f(x)=x22x(x2,4),则f(x)的最小值是三、解答题19某港口的水深y(米)是时间t(0t24,单位:小时)的函数,下面是每天时间与水深的关系表:t03691215182124y10139.97101310.1710经过长期观测,y=f(t)可近似的看成是函数y=Asint+b(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?20已知函数f(x)=lnx的反函数为g(x)()若直线l:y=k1x是函数y=f(x)的图象的切线,直线m:y=k2x是函数y=g(x)图象的切线,求证:lm;()设a,bR,且ab,P=g(),Q=,R=,试比较P,Q,R的大小,并说明理由21设函数f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12(1)求a,b的值(2)当x1,2时,求f(x)的最大值(3)m为何值时,函数g(x)=ax的图象与h(x)=bxm的图象恒有两个交点 22已知梯形ABCD中,ABCD,B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周得到如图所示的几何体(1)求几何体的表面积;(2)点M时几何体的表面上的动点,当四面体MABD的体积为,试判断M点的轨迹是否为2个菱形23已知f(x)=x2+ax+a(a2,xR),g(x)=ex,(x)=()当a=1时,求(x)的单调区间;()求(x)在x1,+)是递减的,求实数a的取值范围;()是否存在实数a,使(x)的极大值为3?若存在,求a的值;若不存在,请说明理由 24已知等差数列an的首项和公差都为2,且a1、a8分别为等比数列bn的第一、第四项(1)求数列an、bn的通项公式;(2)设cn=,求cn的前n项和Sn泸县外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:如图,M=(x,y)|y=2x,N=(x,y)|y=a,若MN=,则a0实数a的取值范围为(,0故选:D【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题2 【答案】B【解析】解:由于是ABC的一个内角,tan=,则=,又sin2+cos2=1,解得sin=,cos=(负值舍去)则cos(+)=coscossinsin=()=故选B【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题3 【答案】A【解析】试题分析:命题:,则以为直径的圆必与圆有公共点,所以,解得,因此,命题是真命题.命题:函数,,且在上是连续不断的曲线,所以函数在区间内有零点,因此,命题是假命题.因此只有为真命题故选A考点:复合命题的真假【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点满足,因此在以为直径的圆上,又点在圆上,因此为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.4 【答案】B【解析】因为,所以由余弦定理得,即,所以或,即此三角形为等腰三角形或直角三角形,故选B答案:B 5 【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x是奇函数,故是偶函数。故答案为:B6 【答案】【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱依题意得(2r2rr2)252r252rr59214, 即(8)r2(305)r(9214)0,即(r2)(8)r4670,r2,该几何体的体积为(4422)58010.7 【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。若O,A,B三点共线,有:-m=4,m=-4故要使O,A,B三点不共线,则。故答案为:B8 【答案】D【解析】解:y=|x|(xR)是偶函数,不满足条件,y=(x0)是奇函数,在定义域上不是单调函数,不满足条件,y=x(xR)是奇函数,在定义域上是增函数,不满足条件,y=x3(xR)奇函数,在定义域上是减函数,满足条件,故选:D9 【答案】C【解析】111.Com试题分析:由为真命题得都是真命题所以是假命题;是假命题;是真命题;是假命题故选C.考点:命题真假判断10【答案】A【解析】解:分两类讨论,过程如下:当a1时,函数y=ax1 和y=logax在1,2上都是增函数,f(x)=ax1+logax在1,2上递增,f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a,loga2=1,得a=,舍去;当0a1时,函数y=ax1 和y=logax在1,2上都是减函数,f(x)=ax1+logax在1,2上递减,f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a,loga2=1,得a=,符合题意;故选A11【答案】D【解析】设的公比为,则,因为也是等比数列,所以,即,所以因为,所以,即,所以,故选D答案:D 12【答案】B【解析】由题意知xab,aA,bB,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B二、填空题13【答案】平行 【解析】解:AB1C1D,AD1BC1,AB1平面AB1D1,AD1平面AB1D1,AB1AD1=AC1D平面BC1D,BC1平面BC1D,C1DBC1=C1由面面平行的判定理我们易得平面AB1D1平面BC1D故答案为:平行【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法14【答案】【解析】试题分析:令,则,所以,又因为奇函数满足,所以,所以在R上的解析式为。考点:函数的奇偶性。15【答案】 【解析】解:对于,把函数y=sin(x)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin(2x),故正确对于,当,是第一象限角且,如=30,=390,则此时有cos=cos=,故错误对于,当x=时,2x+=,函数y=cos(2x+)=1,为函数的最小值,故x=是函数y=cos(2x+)的一条对称轴,故正确对于,函数y=4sin(2x+)=4cos(2x+)=4cos(2)=4cos(2x),故函数y=4sin(2x+)与函数y=4cos(2x)相同,故正确对于,在上,2x,函数y=2sin(2x)在上没有单调性,故错误,故答案为:16【答案】 【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P2再求“第一次摸到红球且第二次也摸到红球”的概率为P=,根据条件概率公式,得:P2=,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题看准确事件之间的联系,正确运用公式,是解决本题的关键17【答案】2 【解析】解:复数z满足z(23i)=6+4i(i为虚数单位),z=,|z|=2,故答案为:2【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题18【答案】0 【解析】解:f(x)=x22x=(x1)21,其图象开口向上,对称抽为:x=1,所以函数f(x)在2,4上单调递增,所以f(x)的最小值为:f(2)=2222=0故答案为:0【点评】本题考查二次函数在闭区间上的最值问题,一般运用数形结合思想进行处理三、解答题19【答案】 【解析】解:(1)由表中数据可以看到:水深最大值为13,最小值为7,=10,且相隔9小时达到一次最大值说明周期为12,因此,故(0t24)(2)要想船舶安全,必须深度f(t)11.5,即,解得:12k+1t5+12k kZ又0t24当k=0时,1t5;当k=1时,13t17;故船舶安全进港的时间段为(1:005:00),(13:0017:00)【点评】本题主要考查三角函数知识的应用问题解决本题的关键在于求出函数解析式求三角函数的解析式注意由题中条件求出周期,最大最小值等20【答案】 【解析】解:()函数f(x)=lnx的反函数为g(x)g(x)=ex,f(x)=ln(x),则函数的导数g(x)=ex,f(x)=,(x0),设直线m与g(x)相切与点(x1,),则切线斜率k2=,则x1=1,k2=e,设直线l与f(x)相切与点(x2,ln(x2),则切线斜率k1=,则x2=e,k1=,故k2k1=e=1,则lm()不妨设ab,PR=g()=0,PR,PQ=g()=,令(x)=2xex+ex,则(x)=2exex0,则(x)在(0,+)上为减函数,故(x)(0)=0,取x=,则ab+0,PQ,=1令t(x)=1+,则t(x)=0,则t(x)在(0,+)上单调递增,故t(x)t(0)=0,取x=ab,则1+0,RQ,综上,PQR,【点评】本题主要考查导数的几何意义的应用以及利用作差法比较大小,考查学生的运算和推理能力,综合性较强,难度较大21【答案】 【解析】解:(1)f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12,ab=2,a2b2=12,解得:a=4,b=2;(2)由(1)得:函数f(x)=lg(4x2x),当x1,2时,4x2x2,12,故当x=2时,函数f(x)取最大值lg12,(3)若函数g(x)=ax的图象与h(x)=bxm的图象恒有两个交点则4x2x=m有两个解,令t=2x,则t0,则t2t=m有两个正解;则,解得:m(,0)【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键22【答案】 【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=422=8,或S=42+(422)+2=8;(2)由已知SABD=2sin135=1,因而要使四面体MABD的体积为,只要M点到平面ABCD的距离为1,因为在空间中有两个平面到平面ABCD的距离为1,它们与几何体的表面的交线构成2个曲边四边形,不是2个菱形【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目23【答案】 【解析】解:(I)当a=1时,(x)=(x2+x+1)ex(x)=ex(x2+x)当(x)0时,0x1;当(x)0时,x1或x0(x)单调减区间为(,0),(1,+),单调增区间为(0,1);(II)(x)=exx2+(2a)x(x)在x1,+)是递减的,(x)0在x1,+)恒成立,x2+(2a)x0在x1,+)恒成立,2ax在x1,+)恒成立,2a1a1a2,1a2;(III)(x)=(2x+a)exex(x2+ax+a)=exx2+(2a)x令(x)=0,得x=0或x=2a:由表
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业品购销及质量保障协议
- 2025年智慧城市储能系统适应性分析报告
- 2025南昌市青云谱实验学校招聘派遣制教师岗位17人考试参考题库及答案解析
- 2025内蒙古乌海市第五人民医院招聘4人考试参考题库及答案解析
- 农田滴灌技术服务合同
- 2025年智慧化乡村生态旅游度假区运营成本分析与控制策略报告
- 2025湖北襄阳市樊城区中小学、幼儿园教师招聘选岗考试参考题库及答案解析
- 2025黑龙江鸡西矿业有限责任公司救护大队招聘31人考试模拟试题及答案解析
- 2025浙江台州市临海市城发沥青材料有限公司招聘2人考试模拟试题及答案解析
- 2025内蒙古兴安盟乌兰浩特科右前旗人民医院科右前旗医共体总医院招聘合同制工作人员43人考试参考题库及答案解析
- 2023-2025年中考语文试题分类汇编:记叙文阅读(辽宁专用)解析版
- 2025年公路检测工程师《水运结构与地基》试题及答案
- 学校食堂从业人员食品安全知识培训考试试题(含答案)
- 电影艺术概述-设计艺术-人文社科-专业资料
- 2025年教科版新教材科学三年级上册全册教案设计(含教学计划)
- 医院药品采购与质量控制规范
- 支部纪检委员课件
- 从+“心”+出发遇见更好的自己-开学第一课暨心理健康教育主题班会-2025-2026学年高中主题班会
- 2025版仓储库房租赁合同范本(含合同生效条件)
- 隔爆水棚替换自动隔爆装置方案及安全技术措施
- 2025年人伤保险理赔试题及答案
评论
0/150
提交评论