曲水县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第1页
曲水县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第2页
曲水县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第3页
曲水县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第4页
曲水县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷曲水县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知 m、n 是两条不重合的直线,、是三个互不重合的平面,则下列命题中 正确的是( )A若 m,n,则 mnB若,则 C若m,n,则 mnD若 m,m,则 2 已知点A(0,1),B(2,3)C(1,2),D(1,5),则向量在方向上的投影为( )ABCD3 已知x,y满足约束条件,使z=ax+y取得最小值的最优解有无数个,则a的值为( )A3B3C1D14 对一切实数x,不等式x2+a|x|+10恒成立,则实数a的取值范围是( )A(,2)BD上是减函数,那么b+c( )A有最大值B有最大值C有最小值D有最小值5 已知等差数列an的前n项和为Sn,若m1,且am1+am+1am2=0,S2m1=38,则m等于( )A38B20C10D96 若命题p:xR,2x210,则该命题的否定是( )AxR,2x210 BxR,2x210CxR,2x210DxR,2x2107 已知命题p:存在x00,使21,则p是( )A对任意x0,都有2x1B对任意x0,都有2x1C存在x00,使21D存在x00,使218 (理)已知tan=2,则=( )ABCD9 如图,四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,D为四面体OABC外一点给出下列命题不存在点D,使四面体ABCD有三个面是直角三角形不存在点D,使四面体ABCD是正三棱锥存在点D,使CD与AB垂直并且相等存在无数个点D,使点O在四面体ABCD的外接球面上其中真命题的序号是()ABCD10已知在R上可导的函数f(x)的图象如图所示,则不等式f(x)f(x)0的解集为( )A(2,0)B(,2)(1,0)C(,2)(0,+)D(2,1)(0,+)11已知集合A=x|a1xa+2,B=x|3x5,则AB=B成立的实数a的取值范围是( )Aa|3a4Ba|3a4Ca|3a4D12曲线y=在点(1,1)处的切线方程为( )Ay=x2By=3x+2Cy=2x3Dy=2x+1二、填空题13抛物线y2=8x上到焦点距离等于6的点的坐标是14f(x)=x(xc)2在x=2处有极大值,则常数c的值为 14已知集合,若3M,5M,则实数a的取值范围是15若在圆C:x2+(ya)2=4上有且仅有两个点到原点O距离为1,则实数a的取值范围是16已知为抛物线上两个不同的点,为抛物线的焦点若线段的中点的纵坐标为2,则直线的方程为_.17图中的三个直角三角形是一个体积为的几何体的三视图,则_.18下图是某算法的程序框图,则程序运行后输出的结果是_三、解答题19已知函数()若函数f(x)在区间1,+)内单调递增,求实数a的取值范围;()求函数f(x)在区间1,e上的最小值20设锐角三角形的内角所对的边分别为(1)求角的大小;(2)若,求21已知函数f(x)=|x10|+|x20|,且满足f(x)10a+10(aR)的解集不是空集()求实数a的取值集合A()若bA,ab,求证aabbabba 22已知集合A=x|x2+2x0,B=x|y=(1)求(RA)B; (2)若集合C=x|ax2a+1且CA,求a的取值范围23(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)(不等式选做题)设,且,则的最小值为(几何证明选做题)如图,中,以为直径的半圆分别交于点,若,则24过抛物线y2=2px(p0)的焦点F作倾斜角为45的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程曲水县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:对于A,若 m,n,则 m与n相交、平行或者异面;故A错误;对于B,若,则 与可能相交,如墙角;故B错误;对于C,若m,n,根据线面垂直的性质定理得到 mn;故C正确;对于D,若 m,m,则 与可能相交;故D错误;故选C【点评】本题考查了空间线线关系面面关系的判断;熟练的运用相关的定理是关键2 【答案】D【解析】解:;在方向上的投影为=故选D【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算3 【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=ax+y,得y=ax+z,若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时a=1,即a=1若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z,此时目标函数只在C处取得最小值,不满足条件综上a=1故选:D【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键注意要对a进行分类讨论4 【答案】B【解析】解:由f(x)在上是减函数,知f(x)=3x2+2bx+c0,x,则15+2b+2c0b+c故选B5 【答案】C【解析】解:根据等差数列的性质可得:am1+am+1=2am,则am1+am+1am2=am(2am)=0,解得:am=0或am=2,若am等于0,显然S2m1=(2m1)am=38不成立,故有am=2,S2m1=(2m1)am=4m2=38,解得m=10故选C6 【答案】C【解析】解:命题p:xR,2x210,则其否命题为:xR,2x210,故选C;【点评】此题主要考查命题否定的定义,是一道基础题;7 【答案】A【解析】解:命题p:存在x00,使21为特称命题,p为全称命题,即对任意x0,都有2x1故选:A8 【答案】D【解析】解:tan=2, =故选D9 【答案】D【解析】【分析】对于可构造四棱锥CABD与四面体OABC一样进行判定;对于,使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥;对于取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,对于先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r,可判定的真假【解答】解:四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,AC=BC=,AB=当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2此时点D,使四面体ABCD有三个面是直角三角形,故不正确使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥,故不正确;取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故正确;先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可存在无数个点D,使点O在四面体ABCD的外接球面上,故正确故选D10【答案】B【解析】解:由f(x)图象单调性可得f(x)在(,1)(0,+)大于0,在(1,0)上小于0,f(x)f(x)0的解集为(,2)(1,0)故选B11【答案】A【解析】解:A=x|a1xa+2B=x|3x5AB=BAB解得:3a4故选A【点评】本题考查集合的包含关系判断及应用,通过对集合间的关系转化为元素的关系,属于基础题12【答案】D【解析】解:y=()=,k=y|x=1=2l:y+1=2(x1),则y=2x+1故选:D二、填空题13【答案】(4,) 【解析】解:抛物线方程为y2=8x,可得2p=8, =2抛物线的焦点为F(2,0),准线为x=2设抛物线上点P(m,n)到焦点F的距离等于6,根据抛物线的定义,得点P到F的距离等于P到准线的距离,即|PF|=m+2=6,解得m=4,n2=8m=32,可得n=4,因此,点P的坐标为(4,)故答案为:(4,)【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标着重考查了抛物线的定义与标准方程等知识,属于基础题14【答案】6 【解析】解:f(x)=x32cx2+c2x,f(x)=3x24cx+c2,f(2)=0c=2或c=6若c=2,f(x)=3x28x+4,令f(x)0x或x2,f(x)0x2,故函数在(,)及(2,+)上单调递增,在(,2)上单调递减,x=2是极小值点故c=2不合题意,c=6故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式15【答案】3a1或1a3 【解析】解:根据题意知:圆x2+(ya)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,21|a|2+1,3a1或1a3故答案为:3a1或1a3【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(ya)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题16【答案】【解析】解析: 设,那么,线段的中点坐标为.由,两式相减得,而,直线的方程为,即.17【答案】【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱底面,且为直角三角形,且,所以三棱锥的体积为,解得.考点:几何体的三视图与体积.18【答案】【解析】由程序框图可知:016271234符合,跳出循环三、解答题19【答案】 【解析】解:(1)由已知得:f(x)=要使函数f(x)在区间1,+)内单调递增,只需0在1,+)上恒成立结合a0可知,只需a,x1,+)即可易知,此时=1,所以只需a1即可(2)结合(1),令f(x)=0得当a1时,由(1)知,函数f(x)在1,e上递增,所以f(x)min=f(1)=0;当时,此时在1,)上f(x)0,在上f(x)0,所以此时f(x)在上递减,在上递增,所以f(x)min=f()=1lna;当时,故此时f(x)0在1,e上恒成立,所以f(x)在1,e上递减,所以f(x)min=f(e)=【点评】本题考查了利用导数研究函数的单调性的基本思路,以及已知函数单调性求参数范围时转化为导函数在指定区间上大于零或小于零恒成立的问题的思想方法20【答案】(1);(2)【解析】1111(2)根据余弦定理,得,所以.考点:正弦定理与余弦定理21【答案】 【解析】解(1)要使不等式|x10|+|x20|10a+10的解集不是空集,则(|x10|+|x20|)min10a+10,根据绝对值三角不等式得:|x10|+|x20|(x10)(x20)|=10,即(|x10|+|x20|)min=10,所以,1010a+10,解得a0,所以,实数a的取值集合为A=(0,+);(2)a,b(0,+)且ab,不妨设ab0,则ab0且1,则1恒成立,即1,所以,aabbab,将该不等式两边同时乘以abbb得,aabbabba,即证【点评】本题主要考查了绝对值三角不等式的应用和不等式的证明,涉及指数函数的性质,属于中档题22【答案】 【解析】解:(1)A=x|x2+2x0=x|2x0,B=x|y=x|x+10=x|x1,RA=x|x2或x0,(RA)B=x|x0;(2)当a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论