




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
梁河县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 数列1,4,7,10,(1)n(3n2)的前n项和为Sn,则S11+S20=( )A16B14C28D302 已知集合A=x|log3x0,B=x|x1,则( )AAB=BAB=RCBADAB3 设是等比数列的前项和,则此数列的公比( )A-2或-1 B1或2 C.或2 D或-14 在ABC中,A、B、C所对的边长分别是a、b、c若sinC+sin(BA)=sin2A,则ABC的形状为( )A等腰三角形B直角三角形C等腰直角三角形D等腰三角形或直角三角形5 已知函数与轴的交点为,且图像上两对称轴之间的最小距离为,则使成立的的最小值为( )1111A B C D6 已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是( )A B C D7 设奇函数f(x)在(0,+)上为增函数,且f(1)=0,则不等式0的解集为( )A(1,0)(1,+)B(,1)(0,1)C(,1)(1,+)D(1,0)(0,1)8 抛物线y=x2的焦点坐标为( )A(0,)B(,0)C(0,4)D(0,2)9 已知函数f(x)=x4cosx+mx2+x(mR),若导函数f(x)在区间2,2上有最大值10,则导函数f(x)在区间2,2上的最小值为( )A12B10C8D610已知四个函数f(x)=sin(sinx),g(x)=sin(cosx),h(x)=cos(sinx),(x)=cos(cosx)在x,上的图象如图,则函数与序号匹配正确的是( )Af(x),g(x),h(x),(x)Bf(x),(x),g(x),h(x)Cg(x),h(x),f(x),(x)Df(x),h(x),g(x),(x)11是第四象限角,则sin=( )ABCD12设函数f(x)=则不等式f(x)f(1)的解集是( )A(3,1)(3,+)B(3,1)(2,+)C(1,1)(3,+)D(,3)(1,3)二、填空题13在(1+x)(x2+)6的展开式中,x3的系数是14在空间直角坐标系中,设,且,则 .15甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为 16若函数在区间上单调递增,则实数的取值范围是_.17用描述法表示图中阴影部分的点(含边界)的坐标的集合为18若实数x,y满足x2+y22x+4y=0,则x2y的最大值为三、解答题19过抛物线y2=2px(p0)的焦点F作倾斜角为45的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程20已知函数f(x)=(a0)的导函数y=f(x)的两个零点为0和3(1)求函数f(x)的单调递增区间;(2)若函数f(x)的极大值为,求函数f(x)在区间0,5上的最小值21某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米池底每平方米的造价为150元,池壁每平方米的造价为120元设池底长方形长为x米()求底面积并用含x的表达式表示池壁面积;()怎样设计水池能使总造价最低?最低造价是多少?22已知函数f(x)=lnx+ax2+b(a,bR)()若曲线y=f(x)在x=1处的切线为y=1,求函数f(x)的单调区间;()求证:对任意给定的正数m,总存在实数a,使函数f(x)在区间(m,+)上不单调;()若点A(x1,y1),B(x2,y2)(x2x10)是曲线f(x)上的两点,试探究:当a0时,是否存在实数x0(x1,x2),使直线AB的斜率等于f(x0)?若存在,给予证明;若不存在,说明理由 23已知函数f(x)=2sin(x+)(0,)的部分图象如图所示;(1)求,;(2)将y=f(x)的图象向左平移(0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个对称点为(,0),求的最小值(3)对任意的x,时,方程f(x)=m有两个不等根,求m的取值范围 24设函数f(x)=lnxax+1()当a=1时,求曲线f(x)在x=1处的切线方程;()当a=时,求函数f(x)的单调区间;()在()的条件下,设函数g(x)=x22bx,若对于x11,2,x20,1,使f(x1)g(x2)成立,求实数b的取值范围梁河县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:an=(1)n(3n2),S11=()+(a2+a4+a6+a8+a10)=(1+7+13+19+25+31)+(4+10+16+22+28)=16,S20=(a1+a3+a19)+(a2+a4+a20)=(1+7+55)+(4+10+58)=+=30,S11+S20=16+30=14故选:B【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用2 【答案】B【解析】解:A=x|x1,B=x|x1;AB=1,AB=R,A,B没有包含关系;即B正确故选B3 【答案】D【解析】试题分析:当公比时,成立.当时,都不等于,所以, ,故选D. 考点:等比数列的性质.4 【答案】D【解析】解:sinC+sin(BA)=sin2A,sin(A+B)+sin(BA)=sin2A,sinAcosB+cosAsinB+sinBcosAcosBsinA=sin2A,2cosAsinB=sin2A=2sinAcosA,2cosA(sinAsinB)=0,cosA=0,或sinA=sinB,A=,或a=b,ABC为等腰三角形或直角三角形故选:D【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA而导致漏解,属中档题和易错题5 【答案】A【解析】考点:三角函数的图象性质6 【答案】D【解析】试题分析:由已知,所以,则,令 ,得,可知D正确故选D考点:三角函数的对称性7 【答案】D【解析】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(1)=f(1)=0,又f(x)在(0,+)上为增函数,则奇函数f(x)在(,0)上也为增函数,当0x1时,f(x)f(1)=0,得0,满足;当x1时,f(x)f(1)=0,得0,不满足,舍去;当1x0时,f(x)f(1)=0,得0,满足;当x1时,f(x)f(1)=0,得0,不满足,舍去;所以x的取值范围是1x0或0x1故选D8 【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,焦点坐标为(0,2)故选:D【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键9 【答案】C【解析】解:由已知得f(x)=4x3cosxx4sinx+2mx+1,令g(x)=4x3cosxx4sinx+2mx是奇函数,由f(x)的最大值为10知:g(x)的最大值为9,最小值为9,从而f(x)的最小值为9+1=8故选C【点评】本题考查了导数的计算、奇函数的最值的性质属于常规题,难度不大10【答案】 D【解析】解:图象是关于原点对称的,即所对应函数为奇函数,只有f(x);图象恒在x轴上方,即在,上函数值恒大于0,符合的函数有h(x)和(x),又图象过定点(0,1),其对应函数只能是h(x),那图象对应(x),图象对应函数g(x)故选:D【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题11【答案】B【解析】解:是第四象限角,sin=,故选B【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论12【答案】A【解析】解:f(1)=3,当不等式f(x)f(1)即:f(x)3如果x0 则 x+63可得 x3,可得3x0如果 x0 有x24x+63可得x3或 0x1综上不等式的解集:(3,1)(3,+)故选A二、填空题13【答案】20 【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为 Tr+1=x123r,令123r=3,解得r=3,满足题意;令123r=2,解得r=,不合题意,舍去;所以展开式中x3的系数是=20故答案为:2014【答案】1【解析】试题分析:,解得:,故填:1.考点:空间向量的坐标运算15【答案】【解析】【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求另外在确定基本事件时,可以看成是有序的,如与不同;有时也可以看成是无序的,如相同(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用求解较好16【答案】【解析】试题分析:因为在区间上单调递增,所以时,恒成立,即恒成立,可得,故答案为.1考点:1、利用导数研究函数的单调性;2、不等式恒成立问题.17【答案】(x,y)|xy0,且1x2,y1 【解析】解:图中的阴影部分的点设为(x,y)则x,y)|1x0,y0或0x2,0y1=(x,y)|xy0且1x2,y1故答案为:(x,y)|xy0,且1x2,y118【答案】10【解析】【分析】先配方为圆的标准方程再画出图形,设z=x2y,再利用z的几何意义求最值,只需求出直线z=x2y过图形上的点A的坐标,即可求解【解答】解:方程x2+y22x+4y=0可化为(x1)2+(y+2)2=5,即圆心为(1,2),半径为的圆,(如图)设z=x2y,将z看做斜率为的直线z=x2y在y轴上的截距,经平移直线知:当直线z=x2y经过点A(2,4)时,z最大,最大值为:10故答案为:10三、解答题19【答案】 【解析】解:由题意可知过焦点的直线方程为y=x,联立,得,设A(x1,y1),B(x2,y2)根据抛物线的定义,得|AB|=x1+x2+p=4p=8,解得p=2抛物线的方程为y2=4x【点评】本题给出直线与抛物线相交,在已知被截得弦长的情况下求焦参数p的值着重考查了抛物线的标准方程和直线与圆锥曲线位置关系等知识,属于中档题20【答案】 【解析】解:f(x)=令g(x)=ax2+(2ab)x+bc函数y=f(x)的零点即g(x)=ax2+(2ab)x+bc的零点即:ax2+(2ab)x+bc=0的两根为0,3则解得:b=c=a,令f(x)0得0x3所以函数的f(x)的单调递增区间为(0,3),(2)由(1)得:函数在区间(0,3)单调递增,在(3,+)单调递减,a=2,; ,函数f(x)在区间0,4上的最小值为221【答案】 【解析】解:()设水池的底面积为S1,池壁面积为S2,则有(平方米),可知,池底长方形宽为米,则()设总造价为y,则当且仅当,即x=40时取等号,所以x=40时,总造价最低为297600元答:x=40时,总造价最低为297600元22【答案】 【解析】解:()由已知得解得此时,(x0)令f(x)=0,得x=1,f(x),f(x)的变化情况如下表:x(0,1)1(1,+)f(x)+0f(x)单调递增极大值单调递减所以函数f(x)的增区间为(0,1),减区间为(1,+)()(x0)(1)当a0时,f(x)0恒成立,此时,函数f(x)在区间(0,+)上单调递增,不合题意,舍去(2)当a0时,令f(x)=0,得,f(x),f(x)的变化情况如下表:x(0,)(,+)f(x)+0f(x)单调递增极大值单调递减所以函数f(x)的增区间为(0,),减区间为(,+)要使函数f(x)在区间(m,+)上不单调,须且只须m,即所以对任意给定的正数m,只须取满足的实数a,就能使得函数f(x)在区间(m,+)上不单调()存在实数x0(x1,x2),使直线AB的斜率等于f(x0)证明如下:令g(x)=lnxx+1(x0),则,易得g(x)在x=1处取到最大值,且最大值g(1)=0,即g(x)0,从而得lnxx1 (*)由,得令,则p(x),q(x)在区间x1,x2上单调递增且,结合(*)式可得,令h(x)=p(x)+q(x),由以上证明可得,h(x)在区间x1,x2上单调递增,且h(x1)0,h(x2)0,所以函数h(x)在区间(x1,x2)上存在唯一的零点x0,即成立,从而命题成立(注:在()中,未计算b的值不扣分)【点评】本小题主要考查函数导数的几何意义、导数的运算及导数的应用,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程思想、化归与转化思想、分类与整合思想23【答案】 【解析】解:(1)根据函数f(x)=2sin(x+)(0,)的部分图象,可得=,求得=2再根据五点法作图可得2+=,求得=,f(x)=2sin(2x)(2)将y=f(x)的图象向左平移(0)个单位长度,得到y=g(x)=2sin=2sin(2x+2)的图象,y=g(x)图象的一个对称点为(,0),2+2=k,kZ,=,故的最小正值为(3)对任意的x,时,2x,sin(2x),即f(x),方程f(x)=m有两个不等根,结合函数f(x),x,时的图象可得,1m2 24【答案】 【解析】解:函数f(x)的定义域为(0,+),(2分)()当a=1时,f(x)=lnxx1,f(1)=2,f(1)=0,f(x)在x=1处的切线方程为y=2(5分)()=(6分)令f(x)0,可得0x1,或x2;令f(x)0,可得1x2故当时,函数f(x)的单调递增区间为(1,2);单调递减区间为(0,1),(2,+).()当时,由()可知函数f(x)在(1,2)上为增函数,函数f(x)在1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 不同喂养方式对新生儿低血糖风险的影响-洞察及研究
- 社会空间结构与个体身份-洞察及研究
- 智能节能技术与应用-洞察及研究
- 产业链协同社会责任实践-洞察及研究
- 汽油中毒皮肤损伤临床流行病学研究-洞察及研究
- 敏捷战略决策中的数据驱动分析-洞察及研究
- 生态兽医学进展-洞察及研究
- 2025年3月妇产模拟考试题与参考答案
- 医学影像技术专升本模拟考试题与参考答案解析
- 2025年福建省宁德市周宁县委政法委招聘3人模拟试卷及参考答案详解
- 2025年全国中小学校党组织书记网络培训示范班在线考试题库及答案
- 全国2025年质量月活动知识竞赛题库及答案
- 2025全国农业(水产)行业职业技能大赛(水生物病害防治员)选拔赛试题库(含答案)
- Unit 4 Reading and Thinking 学案-高中英语人教版(2019) 选择性必修第一册
- 中国新生儿复苏指南解读(2021修订)
- 广告及宣传印刷品制作服务方案
- 安全评价工作程序框图流程图
- 医共体成员单位人力资源工作制度
- 西式烹调师中级理论试卷 答案
- 如何建立高效学习小组
- 汽车系统动力学与控制 教学大纲
评论
0/150
提交评论