




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷腾冲市第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到原点的长,则点轨迹方程为( )ABCD【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力2 等差数列an中,已知前15项的和S15=45,则a8等于( )AB6CD33 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )ABCD4 O为坐标原点,F为抛物线的焦点,P是抛物线C上一点,若|PF|=4,则POF的面积为( )A1BCD25 函数f(x)=x2+,则f(3)=( )A8B9C11D106 若数列an的通项公式an=5()2n24()n1(nN*),an的最大项为第p项,最小项为第q项,则qp等于( )A1B2C3D47 如图,已知双曲线=1(a0,b0)的左右焦点分别为F1,F2,|F1F2|=4,P是双曲线右支上一点,直线PF2交y轴于点A,AF1P的内切圆切边PF1于点Q,若|PQ|=1,则双曲线的渐近线方程为( )Ay=xBy=3xCy=xDy=x8 设f(x)=asin(x+)+bcos(x+)+4,其中a,b,均为非零的常数,f(1988)=3,则f(2008)的值为( )A1B3C5D不确定9 如果随机变量N (1,2),且P(31)=0.4,则P(1)等于( )A0.1B0.2C0.3D0.410在空间中,下列命题正确的是( )A如果直线m平面,直线n内,那么mnB如果平面内的两条直线都平行于平面,那么平面平面C如果平面外的一条直线m垂直于平面内的两条相交直线,那么mD如果平面平面,任取直线m,那么必有m11在ABC中,若A=2B,则a等于( )A2bsinAB2bcosAC2bsinBD2bcosB12已知锐角ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=( )A10B9C8D5二、填空题13设直线系M:xcos+(y2)sin=1(02),对于下列四个命题:AM中所有直线均经过一个定点B存在定点P不在M中的任一条直线上C对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上DM中的直线所能围成的正三角形面积都相等其中真命题的代号是(写出所有真命题的代号)14递增数列an满足2an=an1+an+1,(nN*,n1),其前n项和为Sn,a2+a8=6,a4a6=8,则S10=15设函数,其中x表示不超过x的最大整数若方程f(x)=ax有三个不同的实数根,则实数a的取值范围是16若函数为奇函数,则_【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力17已知a,b是互异的负数,A是a,b的等差中项,G是a,b的等比中项,则A与G的大小关系为18某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .三、解答题19如图,直三棱柱ABCA1B1C1中,D、E分别是AB、BB1的中点,AB=2,(1)证明:BC1平面A1CD;(2)求异面直线BC1和A1D所成角的大小;(3)求三棱锥A1DEC的体积20已知二阶矩阵M有特征值1=4及属于特征值4的一个特征向量=并有特征值2=1及属于特征值1的一个特征向量=, =()求矩阵M;()求M5 21已知椭圆:(ab0)过点A(0,2),离心率为,过点A的直线l与椭圆交于另一点M(I)求椭圆的方程;(II)是否存在直线l,使得以AM为直径的圆C,经过椭圆的右焦点F且与直线 x2y2=0相切?若存在,求出直线l的方程;若不存在,请说明理由 22 23为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有a人在排队等候购票开始售票后,排队的人数平均每分钟增加b人假设每个窗口的售票速度为c人/min,且当开放2个窗口时,25min后恰好不会出现排队现象(即排队的人刚好购完);若同时开放3个窗口,则15min后恰好不会出现排队现象若要求售票10min后不会出现排队现象,则至少需要同时开几个窗口?24已知:函数f(x)=log2,g(x)=2ax+1a,又h(x)=f(x)+g(x)(1)当a=1时,求证:h(x)在x(1,+)上单调递增,并证明函数h(x)有两个零点;(2)若关于x的方程f(x)=log2g(x)有两个不相等实数根,求a的取值范围腾冲市第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】由切线性质知,所以,则由,得,化简得,即点的轨迹方程,故选D,2 【答案】D【解析】解:由等差数列的性质可得:S15=15a8=45,则a8=3故选:D3 【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=故选:A【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件4 【答案】C【解析】解:由抛物线方程得准线方程为:y=1,焦点F(0,1),又P为C上一点,|PF|=4,可得yP=3,代入抛物线方程得:|xP|=2,SPOF=|0F|xP|=故选:C5 【答案】C【解析】解:函数=,f(3)=32+2=11故选C6 【答案】A【解析】解:设=t(0,1,an=5()2n24()n1(nN*),an=5t24t=,an,当且仅当n=1时,t=1,此时an取得最大值;同理n=2时,an取得最小值qp=21=1,故选:A【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题7 【答案】D【解析】解:设内切圆与AP切于点M,与AF1切于点N,|PF1|=m,|QF1|=n,由双曲线的定义可得|PF1|PF2|=2a,即有m(n1)=2a,由切线的性质可得|AM|=|AN|,|NF1|=|QF1|=n,|MP|=|PQ|=1,|MF2|=|NF1|=n,即有m1=n,由解得a=1,由|F1F2|=4,则c=2,b=,由双曲线=1的渐近线方程为y=x,即有渐近线方程为y=x故选D【点评】本题考查双曲线的方程和性质,考查切线的性质,运用对称性和双曲线的定义是解题的关键8 【答案】B【解析】解:f(1988)=asin(1988+)+bcos(1998+)+4=asin+bcos+4=3,asin+bcos=1,故f(2008)=asin(2008+)+bcos(2008+)+4=asin+bcos+4=1+4=3,故选:B【点评】本题主要考查利用诱导公式进行化简求值,属于中档题9 【答案】A【解析】解:如果随机变量N(1,2),且P(31)=0.4,P(31)=P(1)=【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位10【答案】 C【解析】解:对于A,直线m平面,直线n内,则m与n可能平行,可能异面,故不正确;对于B,如果平面内的两条相交直线都平行于平面,那么平面平面,故不正确;对于C,根据线面垂直的判定定理可得正确;对于D,如果平面平面,任取直线m,那么可能m,也可能m和斜交,;故选:C【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题11【答案】D【解析】解:A=2B,sinA=sin2B,又sin2B=2sinBcosB,sinA=2sinBcosB,根据正弦定理=2R得:sinA=,sinB=,代入sinA=2sinBcosB得:a=2bcosB故选D12【答案】D【解析】解:23cos2A+cos2A=23cos2A+2cos2A1=0,即cos2A=,A为锐角,cosA=,又a=7,c=6,根据余弦定理得:a2=b2+c22bccosA,即49=b2+36b,解得:b=5或b=(舍去),则b=5故选D二、填空题13【答案】BC【解析】【分析】验证发现,直线系M:xcos+(y2)sin=1(02)表示圆x2+(y2)2=1的切线的集合,AM中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标C对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,DM中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出【解答】解:因为点(0,2)到直线系M:xcos+(y2)sin=1(02)中每条直线的距离d=1,直线系M:xcos+(y2)sin=1(02)表示圆x2+(y2)2=1的切线的集合,A由于直线系表示圆x2+(y2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上,故C正确;D如下图,M中的直线所能围成的正三角形有两类,其一是如ABB型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确故答案为:BC14【答案】35 【解析】解:2an=an1+an+1,(nN*,n1),数列an为等差数列,又a2+a8=6,2a5=6,解得:a5=3,又a4a6=(a5d)(a5+d)=9d2=8,d2=1,解得:d=1或d=1(舍去)an=a5+(n5)1=3+(n5)=n2a1=1,S10=10a1+=35故答案为:35【点评】本题考查数列的求和,判断出数列an为等差数列,并求得an=2n1是关键,考查理解与运算能力,属于中档题15【答案】(1,) 【解析】解:当2x1时,x=2,此时f(x)=xx=x+2当1x0时,x=1,此时f(x)=xx=x+1当0x1时,1x10,此时f(x)=f(x1)=x1+1=x当1x2时,0x11,此时f(x)=f(x1)=x1当2x3时,1x12,此时f(x)=f(x1)=x11=x2当3x4时,2x13,此时f(x)=f(x1)=x12=x3设g(x)=ax,则g(x)过定点(0,0),坐标系中作出函数y=f(x)和g(x)的图象如图:当g(x)经过点A(2,1),D(4,1)时有3个不同的交点,当经过点B(1,1),C(3,1)时,有2个不同的交点,则OA的斜率k=,OB的斜率k=1,OC的斜率k=,OD的斜率k=,故满足条件的斜率k的取值范围是或,故答案为:(1,)【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想16【答案】2016【解析】因为函数为奇函数且,则由,得,整理,得17【答案】AG 【解析】解:由题意可得A=,G=,由基本不等式可得AG,当且仅当a=b取等号,由题意a,b是互异的负数,故AG故答案是:AG【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题18【答案】12【解析】考点:分层抽样三、解答题19【答案】 【解析】(1)证明:连接AC1与A1C相交于点F,连接DF,由矩形ACC1A1可得点F是AC1的中点,又D是AB的中点,DFBC1,BC1平面A1CD,DF平面A1CD,BC1平面A1CD; (2)解:由(1)可得A1DF或其补角为异面直线BC1和A1D所成角DF=BC1=1,A1D=,A1F=A1C=1在A1DF中,由余弦定理可得:cosA1DF=,A1DF(0,),A1DF=,异面直线BC1和A1D所成角的大小;(3)解:AC=BC,D为AB的中点,CDAB,平面ABB1A1平面ABC=AB,CD平面ABB1A1,CD=1=SBDE=三棱锥CA1DE的体积V=【点评】本题考查线面平行的证明,考查三棱锥的体积的求法,考查异面直线BC1和A1D所成角,是中档题,解题时要注意空间中线线、线面、面面间的位置关系及性质的合理运用20【答案】 【解析】解:()设M=则=4=,又=(1)=,由可得a=1,b=2,c=3,d=2,M=;()易知=0+(1),M5=(1)6=【点评】本题考查矩阵的运算法则,考查学生的计算能力,比较基础 21【答案】 【解析】解:()依题意得,解得,所以所求的椭圆方程为;()假设存在直线l,使得以AM为直径的圆C,经过椭圆后的右焦点F且与直线x2y2=0相切,因为以AM为直径的圆C过点F,所以AFM=90,即AFAM,又=1,所以直线MF的方程为y=x2,由消去y,得3x28x=0,解得x=0或x=,所以M(0,2)或M(,),(1)当M为(0,2)时,以AM为直径的圆C为:x2+y2=4,则圆心C到直线x2y2=0的距离为d=,所以圆C与直线x2y2=0不相切;(2)当M为(,)时,以AM为直径的圆心C为(),半径为r=,所以圆心C到直线x2y2=0的距离为d=r,所以圆心C与直线x2y2=0相切,此时kAF=,所以直线l的方程为y=+2,即x+2y4=0,综上所述,存在满足条件的直线l,其方程为x+2y4=0【点评】本题考直线与圆锥曲线的关系、椭圆方程的求解,考查直线与圆的位置关系,考查分类讨论思想,解决探究型问题,往往先假设存在,由此推理,若符合题意,则存在,否则不存在22【答案】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为5,15,(15,25,(25,35,(35,45,由此得到样本的重量频率分布直方图(如图),(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在5,15内的小球个数为X,求X的分布列和数学期望(以直方图中的频率作为概率)【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差【专题】概率与统计【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20根据平均数值公式求解即可(2)XB(3,),根据二项分布求解P(X=0),P(X=1),P(X=2)=,P(X=3),列出分布列,求解数学期望即可【解析】解:(1)由题意得,(0.02+0.032+a+0.018)10=1解得a=0.03;又由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20,而50个样本小球重量的平均值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 评估个人发展潜力计划
- 贵州省湄潭县2025年数学八下期末达标检测模拟试题含解析
- 计算机二级VB编程题解析及答案
- 阶段性学习评估标准计划
- 软件开发的最佳实践试题及答案
- 家庭与学校美术教育合作计划
- 优化团队开发流程的战略与方法试题及答案
- 城市交通枢纽规划咨询重点基础知识点
- 2024年四川省交通运输厅下属事业单位真题
- 计算机软件考试详细复习计划试题及答案
- 重庆市林业工程师职称考试复习资料《专业知识》
- 血液学检验51第九章-第6节-骨髓增生异常-骨髓增殖性肿瘤
- 广州国际轻纺城项目分析ppt课件
- T∕CNTAC 23-2018 医护职业服装
- 芯片生产全过程从沙子到封装课件
- 水泥混凝土路面翻修施工方案完整
- 怡口软水机中央净水机安装调试指南.
- 暖通毕业设计外文翻译
- 小学英语正在进行时用法及习题(含答案)
- 小黄瓜种植观察日记(课堂PPT)
- 焊缝外观质量检验规范
评论
0/150
提交评论