




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
台儿庄区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆在扇形OAB内随机取一点,则此点取自阴影部分的概率是( )A1BCD2 已知函数f(x)=x22x+3在0,a上有最大值3,最小值2,则a的取值范围( )A1,+)B0.2C1,2D(,23 如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是( )Ax2=1B=1C=1D=14 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )A1BCD5 “ab,c0”是“acbc”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件6 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A34种B35种C120种D140种7 若,则下列不等式一定成立的是( )ABCD8 已知随机变量X服从正态分布N(2,2),P(0X4)=0.8,则P(X4)的值等于( )A0.1B0.2C0.4D0.69 设Sn为等比数列an的前n项和,若a1=1,公比q=2,Sk+2Sk=48,则k等于( )A7B6C5D410设a=60.5,b=0.56,c=log0.56,则( )AcbaBcabCbacDbca11已知三个数,成等比数列,其倒数重新排列后为递增的等比数列的前三项,则能使不等式成立的自然数的最大值为( )A9 B8 C.7 D512已知偶函数f(x)=loga|xb|在(,0)上单调递增,则f(a+1)与f(b+2)的大小关系是( )Af(a+1)f(b+2)Bf(a+1)f(b+2)Cf(a+1)f(b+2)Df(a+1)f(b+2)二、填空题13设f(x)是(x2+)6展开式的中间项,若f(x)mx在区间,上恒成立,则实数m的取值范围是14已知函数.表示中的最小值,若函数恰有三个零点,则实数的取值范围是 15将全体正整数排成一个三角形数阵:按照以上排列的规律,第n行(n3)从左向右的第3个数为16递增数列an满足2an=an1+an+1,(nN*,n1),其前n项和为Sn,a2+a8=6,a4a6=8,则S10=17设函数f(x)=,则f(f(2)的值为18已知圆O:x2+y2=1和双曲线C:=1(a0,b0)若对双曲线C上任意一点A(点A在圆O外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,则=三、解答题19已知函数f(x)=ax3+2xa,()求函数f(x)的单调递增区间;()若a=n且nN*,设xn是函数fn(x)=nx3+2xn的零点(i)证明:n2时存在唯一xn且;(i i)若bn=(1xn)(1xn+1),记Sn=b1+b2+bn,证明:Sn1 20(本小题满分12分)已知函数()(1)当时,求函数在上的最大值和最小值;(2)当时,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;21已知函数f(x)=x|xm|,xR且f(4)=0(1)求实数m的值(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间(3)若方程f(x)=k有三个实数解,求实数k的取值范围 22在极坐标系下,已知圆O:=cos+sin和直线l:(1)求圆O和直线l的直角坐标方程;(2)当(0,)时,求直线l与圆O公共点的极坐标23已知函数f(x)=loga(x2+2),若f(5)=3;(1)求a的值; (2)求的值; (3)解不等式f(x)f(x+2)24设数列的前项和为,且满足,数列满足,且(1)求数列和的通项公式(2)设,数列的前项和为,求证: (3)设数列满足(),若数列是递增数列,求实数的取值范围。台儿庄区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:设扇形的半径为r,则扇形OAB的面积为,连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:,此点取自阴影部分的概率是故选A2 【答案】C【解析】解:f(x)=x22x+3=(x1)2+2,对称轴为x=1所以当x=1时,函数的最小值为2当x=0时,f(0)=3由f(x)=3得x22x+3=3,即x22x=0,解得x=0或x=2要使函数f(x)=x22x+3在0,a上有最大值3,最小值2,则1a2故选C【点评】本题主要考查二次函数的图象和性质,利用配方法是解决二次 函数的基本方法3 【答案】B【解析】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2y2=(0),代入点P(2,),可得=42=2,可得双曲线的方程为x2y2=2,即为=1故选:B4 【答案】C【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为因此可知:A,B,D皆有可能,而1,故C不可能故选C【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键5 【答案】A【解析】解:由“ab,c0”能推出“acbc”,是充分条件,由“acbc”推不出“ab,c0”不是必要条件,例如a=1,c=1,b=1,显然acbc,但是ab,c0,故选:A【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题6 【答案】A【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有=34种故选:A【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题7 【答案】D【解析】因为,有可能为负值,所以排除A,C,因为函数为减函数且,所以,排除B,故选D答案:D 8 【答案】A【解析】解:随机变量服从正态分布N(2,o2),正态曲线的对称轴是x=2P(0X4)=0.8,P(X4)=(10.8)=0.1,故选A9 【答案】D【解析】解:由题意,Sk+2Sk=,即32k=48,2k=16,k=4故选:D【点评】本题考查等比数列的通项公式,考查了等比数列的前n项和,是基础题10【答案】A【解析】解:a=60.51,0b=0.561,c=log0.560,cba故选:A【点评】本题考查了指数函数与对数函数的单调性,属于基础题11【答案】C 【解析】试题分析:因为三个数等比数列,所以,倒数重新排列后恰好为递增的等比数列的前三项,为,公比为,数列是以为首项,为公比的等比数列,则不等式等价为,整理,得,故选C. 1考点:1、等比数列的性质;2、等比数列前项和公式.12【答案】B【解析】解:y=loga|xb|是偶函数loga|xb|=loga|xb|xb|=|xb|x22bx+b2=x2+2bx+b2整理得4bx=0,由于x不恒为0,故b=0由此函数变为y=loga|x|当x(,0)时,由于内层函数是一个减函数,又偶函数y=loga|xb|在区间(,0)上递增故外层函数是减函数,故可得0a1综上得0a1,b=0a+1b+2,而函数f(x)=loga|xb|在(0,+)上单调递减f(a+1)f(b+2)故选B二、填空题13【答案】5,+)【解析】二项式定理【专题】概率与统计;二项式定理【分析】由题意可得 f(x)=x3,再由条件可得mx2 在区间,上恒成立,求得x2在区间,上的最大值,可得m的范围【解答】解:由题意可得 f(x)=x6=x3由f(x)mx在区间,上恒成立,可得mx2 在区间,上恒成立,由于x2在区间,上的最大值为 5,故m5,即m的范围为5,+),故答案为:5,+)【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题14【答案】【解析】试题分析:,因为,所以要使恰有三个零点,须满足,解得考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.15【答案】3+ 【解析】解:本小题考查归纳推理和等差数列求和公式前n1行共有正整数1+2+(n1)个,即个,因此第n行第3个数是全体正整数中第3+个,即为3+故答案为:3+16【答案】35 【解析】解:2an=an1+an+1,(nN*,n1),数列an为等差数列,又a2+a8=6,2a5=6,解得:a5=3,又a4a6=(a5d)(a5+d)=9d2=8,d2=1,解得:d=1或d=1(舍去)an=a5+(n5)1=3+(n5)=n2a1=1,S10=10a1+=35故答案为:35【点评】本题考查数列的求和,判断出数列an为等差数列,并求得an=2n1是关键,考查理解与运算能力,属于中档题17【答案】4 【解析】解:函数f(x)=,f(2)=42=,f(f(2)=f()=4故答案为:418【答案】1 【解析】解:若对双曲线C上任意一点A(点A在圆O外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,可通过特殊点,取A(1,t),则B(1,t),C(1,t),D(1,t),由直线和圆相切的条件可得,t=1将A(1,1)代入双曲线方程,可得=1故答案为:1【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题三、解答题19【答案】 【解析】解:()f(x)=3ax2+2,若a0,则f(x)0,函数f(x)在R上单调递增;若a0,令f(x)0,或,函数f(x)的单调递增区间为和;()(i)由()得,fn(x)=nx3+2xn在R上单调递增,又fn(1)=n+2n=20,fn()=当n2时,g(n)=n2n10,n2时存在唯一xn且(i i)当n2时,(零点的区间判定),(数列裂项求和),又f1(x)=x3+2x1,(函数法定界),又,(不等式放缩技巧)命题得证【点评】本题主要考查了导数的求单调区间的方法和利用数列的裂项求和和不等式的放缩求和技巧解题,属于难题 20【答案】【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力(2)当时,假设存在实数,使有最小值3,7分当时,在上单调递减,(舍去)8分当时,在上单调递减,在上单调递增,满足条件10分当时,在上单调递减,(舍去),11分综上,存在实数,使得当时,函数最小值是312分 21【答案】 【解析】解:(1)f(4)=0,4|4m|=0m=4,(2)f(x)=x|x4|=图象如图所示:由图象可知,函数在(,2),(4,+)上单调递增,在(2,4)上单调递减(3)方程f(x)=k的解的个数等价于函数y=f(x)与函数y=k的图象交点的个数,由图可知k(0,4) 22【答案】 【解析】解:(1)圆O:=cos+sin,即2=cos+sin,故圆O 的直角坐标方程为:x2+y2=x+y,即x2+y2xy=0直线l:,即sincos=1,则直线的直角坐标方程为:yx=1,即xy+1=0(2)由,可得 ,直线l与圆O公共点的直角坐标为(0,1),故直线l 与圆O 公共点的一个极坐标为【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,属于基础题23【答案】 【解析】解:(1)f(5)=3,即loga27=3解锝:a=3(2)由(1)得函数,则=(3)不等式f(x)f(x+2),即为化简不等式得函数y=log3x在(0,+)上为增函数,且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新解读《CB-T 532 - 1999船用通风管路放水塞》新解读
- Brand KPIs for health insurance:ICICI Lombard in India-英文培训课件2025.4
- 基于注意力机制跨阶段并行残差融合模型的非侵入式负荷辨识
- 汽车传感器与检测技术电子教案:雷达传感器
- 介绍大学活动方案
- 介绍校园文化活动方案
- 介绍美食活动方案
- 从化老人慰问活动方案
- 仓库冬季活动策划方案
- 仙人吹气活动方案
- 纹眉行业市场分析
- 港湾网络介绍胶片
- 关于幼儿园建设实施方案范文
- 北京市清华附中2024届高二化学第二学期期末达标检测模拟试题含解析
- 江苏省苏州市2023年中考语文真题试卷
- 统编教材小学生诗词大赛题库(各种题型)及答案
- 某机械公司员工管理手册
- 石材养护报价表范本
- 红河县年产50吨珍珠棉建设项目环评报告
- 术中大出血的抢救及护理配合
- 四川甘孜州遴选(考调)公务员39人2024年国家公务员考试考试大纲历年真题420笔试历年难易错点考题荟萃附带答案详解
评论
0/150
提交评论