




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宣州区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在内的人数分别为( )A20,2 B24,4 C25,2 D25,42 已知全集U=R,集合M=x|2x12和N=x|x=2k1,k=1,2,的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有( )A3个B2个C1个D无穷多个3 如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则等( )ABCD4 已知集合M=x|x21,N=x|x0,则MN=( )ABx|x0Cx|x1Dx|0x1可5 在等差数列an中,a1=2,a3+a5=8,则a7=( )A3B6C7D86 如图,ABC所在平面上的点Pn(nN*)均满足PnAB与PnAC的面积比为3;1, =(2xn+1)(其中,xn是首项为1的正项数列),则x5等于( )A65B63C33D317 设xR,则“|x2|1”是“x2+x20”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件8 “方程+=1表示椭圆”是“3m5”的( )条件A必要不充分B充要C充分不必要D不充分不必要9 已知正项数列an的前n项和为Sn,且2Sn=an+,则S2015的值是( )ABC2015D10用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为( )Aa,b,c中至少有两个偶数Ba,b,c中至少有两个偶数或都是奇数Ca,b,c都是奇数Da,b,c都是偶数11若实数x,y满足不等式组则2x+4y的最小值是( )A6B6C4D212某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A80B40C60D20二、填空题13【泰州中学2018届高三10月月考】设函数,其中,若存在唯一的整数,使得,则的取值范围是 14如图所示,圆中,弦的长度为,则的值为_【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想15定义:x(xR)表示不超过x的最大整数例如1.5=1,0.5=1给出下列结论:函数y=sinx是奇函数;函数y=sinx是周期为2的周期函数;函数y=sinxcosx不存在零点;函数y=sinx+cosx的值域是2,1,0,1其中正确的是(填上所有正确命题的编号)16将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是17【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是_.18定义在(,+)上的偶函数f(x)满足f(x+1)=f(x),且f(x)在1,0上是增函数,下面五个关于f(x)的命题中:f(x)是周期函数;f(x) 的图象关于x=1对称;f(x)在0,1上是增函数;f(x)在1,2上为减函数;f(2)=f(0)正确命题的个数是三、解答题19(本小题满分12分)已知椭圆的离心率为,、分别为左、右顶点, 为其右焦点,是椭圆上异于、的动点,且的最小值为-2.(1)求椭圆的标准方程;(2)若过左焦点的直线交椭圆于两点,求的取值范围.20设函数f(x)=lnxax2bx(1)当a=2,b=1时,求函数f(x)的单调区间;(2)令F(x)=f(x)+ax2+bx+(2x3)其图象上任意一点P(x0,y0)处切线的斜率k恒成立,求实数a的取值范围;(3)当a=0,b=1时,方程f(x)=mx在区间1,e2内有唯一实数解,求实数m的取值范围 21在平面直角坐标系中,已知M(a,0),N(a,0),其中aR,若直线l上有且只有一点P,使得|PM|+|PN|=10,则称直线l为“黄金直线”,点P为“黄金点”由此定义可判断以下说法中正确的是当a=7时,坐标平面内不存在黄金直线;当a=5时,坐标平面内有无数条黄金直线;当a=3时,黄金点的轨迹是个椭圆;当a=0时,坐标平面内有且只有1条黄金直线22数列中,且满足.(1)求数列的通项公式;(2)设,求.23如图,平面ABB1A1为圆柱OO1的轴截面,点C为底面圆周上异于A,B的任意一点()求证:BC平面A1AC;()若D为AC的中点,求证:A1D平面O1BC24(本小题满分12分)两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设分别表示甲,乙,丙3个盒中的球数.(1)求,的概率;(2)记,求随机变量的概率分布列和数学期望.【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力宣州区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】考点:茎叶图,频率分布直方图2 【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为MN,又由M=x|2x12得1x3,即M=x|1x3,在此范围内的奇数有1和3所以集合MN=1,3共有2个元素,故选B3 【答案】C【解析】解:M、G分别是BC、CD的中点,=, =+=+=故选C【点评】本题考查的知识点是向量在几何中的应用,其中将化为+,是解答本题的关键4 【答案】D【解析】解:由已知M=x|1x1,N=x|x0,则MN=x|0x1,故选D【点评】此题是基础题本题属于以不等式为依托,求集合的交集的基础题,5 【答案】B【解析】解:在等差数列an中a1=2,a3+a5=8,2a4=a3+a5=8,解得a4=4,公差d=,a7=a1+6d=2+4=6故选:B6 【答案】 D【解析】解:由=(2xn+1),得+(2xn+1)=,设,以线段PnA、PnD作出图形如图,则,则,即xn+1=2xn+1,xn+1+1=2(xn+1),则xn+1构成以2为首项,以2为公比的等比数列,x5+1=224=32,则x5=31故选:D【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题7 【答案】A【解析】解:由“|x2|1”得1x3,由x2+x20得x1或x2,即“|x2|1”是“x2+x20”的充分不必要条件,故选:A8 【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即3m5且m1,此时3m5成立,即充分性成立,当m=1时,满足3m5,但此时方程+=1即为x2+y2=4为圆,不是椭圆,不满足条件即必要性不成立故“方程+=1表示椭圆”是“3m5”的充分不必要条件故选:C【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题9 【答案】D【解析】解:2Sn=an+,解得a1=1当n=2时,2(1+a2)=,化为=0,又a20,解得,同理可得猜想验证:2Sn=+=, =,因此满足2Sn=an+,Sn=S2015=故选:D【点评】本题考查了猜想分析归纳得出数列的通项公式的方法、递推式的应用,考查了由特殊到一般的思想方法,考查了推理能力与计算能力,属于难题10【答案】B【解析】解:结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数反设的内容是 假设a,b,c中至少有两个偶数或都是奇数故选B【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“11【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=x+,平移直线y=x+,由图象可知当直线y=x+经过点C时,直线y=x+的截距最小,此时z最小,由,解得,即C(3,3),此时z=2x+4y=23+4(3)=612=6故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键12【答案】B【解析】解:要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,三年级要抽取的学生是200=40,故选:B【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果二、填空题13【答案】【解析】试题分析:设,由题设可知存在唯一的整数,使得在直线的下方.因为,故当时,函数单调递减; 当时,函数单调递增;故,而当时,故当且,解之得,应填答案.考点:函数的图象和性质及导数知识的综合运用【易错点晴】本题以函数存在唯一的整数零点,使得为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数,使得在直线的下方.然后再借助导数的知识求出函数的最小值,依据题设建立不等式组求出解之得.14【答案】15【答案】 【解析】解:函数y=sinx是非奇非偶函数;函数y=sinx的周期与y=sinx的周期相同,故是周期为2的周期函数;函数y=sinx的取值是1,0,1,故y=sinxcosx不存在零点;函数数y=sinx、y=cosx的取值是1,0,1,故y=sinx+cosx的值域是2,1,0,1故答案为:【点评】本题考查命题的真假判断,考查新定义,正确理解新定义是关键16【答案】 【解析】解:设剪成的小正三角形的边长为x,则:S=,(0x1)令3x=t,t(2,3),S=,当且仅当t=即t=2时等号成立;故答案为:17【答案】【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用。因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的。根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧。许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效。18【答案】3个 【解析】解:定义在(,+)上的偶函数f(x),f(x)=f(x);f(x+1)=f(x),f(x+1)=f(x),f(x+2)=f(x+1)=f(x),f(x+1)=f(x)即f(x+2)=f(x),f(x+1)=f(x+1),周期为2,对称轴为x=1所以正确,故答案为:3个三、解答题19【答案】(1);(2).【解析】试题解析:(1)根据题意知,即,则,设,当时,则.椭圆的方程为.1111设,则,.,.综上知,.考点: 1、待定系数法求椭圆的标准方程;2、平面向量的数量积公式、圆锥曲线中的最值问题.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.20【答案】 【解析】解:(1)依题意,知f(x)的定义域为(0,+)当a=2,b=1时,f(x)=lnxx2x,f(x)=2x1=令f(x)=0,解得x=当0x时,f(x)0,此时f(x)单调递增;当x时,f(x)0,此时f(x)单调递减所以函数f(x)的单调增区间(0,),函数f(x)的单调减区间(,+)(2)F(x)=lnx+,x2,3,所以k=F(x0)=,在x02,3上恒成立,所以a(x02+x0)max,x02,3当x0=2时,x02+x0取得最大值0所以a0(3)当a=0,b=1时,f(x)=lnx+x,因为方程f(x)=mx在区间1,e2内有唯一实数解,所以lnx+x=mx有唯一实数解m=1+,设g(x)=1+,则g(x)=令g(x)0,得0xe; g(x)0,得xe,g(x)在区间1,e上是增函数,在区间e,e2上是减函数,1 0分g(1)=1,g(e2)=1+=1+,g(e)=1+,所以m=1+,或1m1+ 21【答案】 【解析】解:当a=7时,|PM|+|PN|MN|=1410,因此坐标平面内不存在黄金直线;当a=5时,|PM|+|PN|=10=|MN|,因此线段MN上的点都满足上式,因此坐标平面内有无数条黄金直线,正确;当a=3时,|PM|+|PN|=106=|MN|,黄金点的轨迹是个椭圆,正确;当a=0时,点M与N重合为(0,0),|PM|+|PN|=10=2|PM|,点P在以原点为圆心、5为半径的圆上,因此坐标平面内有且无数条黄金直线故答案为:【点评】本题考查了新定义“黄金直线”、“黄金点”、椭圆的定义、圆的定义等基础知识,考查了推理能力与计算能力,属于中档题22【答案】(1);(2)【解析】试题分析:(1)由,所以是等差数列且,即可求解数列的通项公式;(2)由(1)令,得,当时,;当时,;当时,即可分类讨论求解数列当时,.1考点:等差数列的通项公式;数列的求和23【答案】 【解析】证明:()因为AB为圆O的直径,点C为圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校蒸饭柜管理制度
- 学生激励与管理制度
- 孵化器财务管理制度
- 安全穿透式管理制度
- 安检科奖惩管理制度
- 官方工作群管理制度
- 实验高中园管理制度
- 客房质检部管理制度
- 室外吸烟点管理制度
- 应届毕业生管理制度
- 学校食堂食材配送服务方案(肉类、粮油米面、蔬菜水果类)
- 信用修复申请书
- 人教版初中物理实验目录详表
- 糖尿病周围血管病变课件
- (完整版)政府工程项目代建管理方案(范本)
- 2023年江苏省苏州大学医学部药学院统招博士后招收(共500题含答案解析)高频考点题库参考模拟练习试卷
- 2023年全国高考语文乙卷作文“一花独放不是春百花齐放春满园”写作
- 《国家中药饮片炮制规范》全文
- 合作方案介绍文案
- 年部级优课马克思主义在中国的传播
- 检验科生物安全防护知识培训试题及
评论
0/150
提交评论