




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷玛多县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 下列图象中,不能作为函数y=f(x)的图象的是( )ABCD2 如图,在棱长为1的正方体中,为棱中点,点在侧面内运动,若,则动点的轨迹所在曲线为( )A.直线 B.圆 C.双曲线 D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.3 设函数f(x)的定义域为A,若存在非零实数l使得对于任意xI(IA),有x+lA,且f(x+l)f(x),则称f(x)为I上的l高调函数,如果定义域为R的函数f(x)是奇函数,当x0时,f(x)=|xa2|a2,且函数f(x)为R上的1高调函数,那么实数a的取值范围为( )A0a1BaC1a1D2a24 双曲线E与椭圆C:1有相同焦点,且以E的一个焦点为圆心与双曲线的渐近线相切的圆的面积为,则E的方程为( )A.1 B.1C.y21 D.15 已知四个函数f(x)=sin(sinx),g(x)=sin(cosx),h(x)=cos(sinx),(x)=cos(cosx)在x,上的图象如图,则函数与序号匹配正确的是( )Af(x),g(x),h(x),(x)Bf(x),(x),g(x),h(x)Cg(x),h(x),f(x),(x)Df(x),h(x),g(x),(x)6 下列函数在其定义域内既是奇函数又是增函数的是()A B C D7 下列各组函数为同一函数的是( )Af(x)=1;g(x)=Bf(x)=x2;g(x)=Cf(x)=|x|;g(x)=Df(x)=;g(x)=8 若实数x,y满足不等式组则2x+4y的最小值是( )A6B6C4D29 下列函数中,在其定义域内既是奇函数又是减函数的是( )Ay=|x|(xR)By=(x0)Cy=x(xR)Dy=x3(xR)10某个几何体的三视图如图所示,该几何体的表面积为9214,则该几何体的体积为( )A8020B4020C6010D801011如图F1、F2是椭圆C1: +y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是( )ABCD12已知双曲线(a0,b0)的右焦点F,直线x=与其渐近线交于A,B两点,且ABF为钝角三角形,则双曲线离心率的取值范围是( )ABCD二、填空题13已知函数f(x)=,若f(f(0)=4a,则实数a=14的展开式中,常数项为_(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.15ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60,b=2,则c的值为16已知x是400和1600的等差中项,则x=17已知椭圆中心在原点,一个焦点为F(2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是18一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是三、解答题19A=x|x23x+2=0,B=x|ax2=0,若BA,求a20现有5名男生和3名女生(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?21已知函数的定义域为集合,(1)求,;(2)若,求实数的取值范围.22已知函数(1)求f(x)的周期(2)当时,求f(x)的最大值、最小值及对应的x值23已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由24已知数列an的前n项和为Sn,a1=3,且2Sn=an+1+2n(1)求a2;(2)求数列an的通项公式an;(3)令bn=(2n1)(an1),求数列bn的前n项和Tn 玛多县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:根据函数的定义可知,对应定义域内的任意变量x只能有唯一的y与x对应,选项B中,当x0时,有两个不同的y和x对应,所以不满足y值的唯一性所以B不能作为函数图象故选B【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内x的任意性,x对应y值的唯一性2 【答案】C. 【解析】易得平面,所有满足的所有点在以为轴线,以所在直线为母线的圆锥面上,点的轨迹为该圆锥面与平面的交线,而已知平行于圆锥面轴线的平面截圆锥面得到的图形是双曲线,点的轨迹是双曲线,故选C.3 【答案】 B【解析】解:定义域为R的函数f(x)是奇函数,当x0时,f(x)=|xa2|a2=图象如图,f(x)为R上的1高调函数,当x0时,函数的最大值为a2,要满足f(x+l)f(x),1大于等于区间长度3a2(a2),13a2(a2),a故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题4 【答案】【解析】选C.可设双曲线E的方程为1,渐近线方程为yx,即bxay0,由题意得E的一个焦点坐标为(,0),圆的半径为1,焦点到渐近线的距离为1.即1,又a2b26,b1,a,E的方程为y21,故选C.5 【答案】 D【解析】解:图象是关于原点对称的,即所对应函数为奇函数,只有f(x);图象恒在x轴上方,即在,上函数值恒大于0,符合的函数有h(x)和(x),又图象过定点(0,1),其对应函数只能是h(x),那图象对应(x),图象对应函数g(x)故选:D【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题6 【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性【试题解析】若函数是奇函数,则故排除A、D;对C:在(-和(上单调递增,但在定义域上不单调,故C错;故答案为:B7 【答案】C【解析】解:A、函数f(x)的定义域为R,函数g(x)的定义域为x|x0,定义域不同,故不是相同函数;B、函数f(x)的定义域为R,g(x)的定义域为x|x2,定义域不同,故不是相同函数;C、因为,故两函数相同;D、函数f(x)的定义域为x|x1,函数g(x)的定义域为x|x1或x1,定义域不同,故不是相同函数综上可得,C项正确故选:C8 【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=x+,平移直线y=x+,由图象可知当直线y=x+经过点C时,直线y=x+的截距最小,此时z最小,由,解得,即C(3,3),此时z=2x+4y=23+4(3)=612=6故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键9 【答案】D【解析】解:y=|x|(xR)是偶函数,不满足条件,y=(x0)是奇函数,在定义域上不是单调函数,不满足条件,y=x(xR)是奇函数,在定义域上是增函数,不满足条件,y=x3(xR)奇函数,在定义域上是减函数,满足条件,故选:D10【答案】【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱依题意得(2r2rr2)252r252rr59214, 即(8)r2(305)r(9214)0,即(r2)(8)r4670,r2,该几何体的体积为(4422)58010.11【答案】 D【解析】解:设|AF1|=x,|AF2|=y,点A为椭圆C1: +y2=1上的点,2a=4,b=1,c=;|AF1|+|AF2|=2a=4,即x+y=4;又四边形AF1BF2为矩形,+=,即x2+y2=(2c)2=12,由得:,解得x=2,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|AF1|=yx=2,2n=2c=2,双曲线C2的离心率e=故选D【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题12【答案】D【解析】解:函数f(x)=(x3)ex,f(x)=ex+(x3)ex=(x2)ex,令f(x)0,即(x2)ex0,x20,解得x2,函数f(x)的单调递增区间是(2,+)故选:D【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目二、填空题13【答案】2 【解析】解:f(0)=2,f(f(0)=f(2)=4+2a=4a,所以a=2故答案为:214【答案】【解析】的展开式通项为,所以当时,常数项为.15【答案】 【解析】解:ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60,b=2,由正弦定理可得:,解得:a=3,利用余弦定理:a2=b2+c22bccosA,可得:9=4+c22c,即c22c5=0,解得:c=1+,或1(舍去)故答案为:【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题16【答案】1000 【解析】解:x是400和1600的等差中项,x=1000故答案为:100017【答案】 【解析】解:已知为所求;故答案为:【点评】本题主要考查椭圆的标准方程属基础题18【答案】 【解析】解:由题意可得,2a,2b,2c成等差数列2b=a+c4b2=a2+2ac+c2b2=a2c2联立可得,5c2+2ac3a2=05e2+2e3=00e1故答案为:【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题三、解答题19【答案】 【解析】解:解:集合A=x|x23x+2=0=1,2BA,(1)B=时,a=0(2)当B=1时,a=2(3)当B=2时,a=1故a值为:2或1或020【答案】 【解析】解:(1)先排3个女生作为一个整体,与其余的5个元素做全排列有 A33A66=4320种(2)从中选5人,且要求女生只有2名,则男生有3人,先选再排,故有C32C53A55=3600种【点评】本题主要考查排列与组合及两个基本原理,排列数公式、组合数公式的应用,注意特殊元素和特殊位置要优先排21【答案】(1),;(2)或。【解析】试题分析:(1)由题可知:,所以,因此集合,画数轴表示出集合A,集合B,观察图形可求,观察数轴,可以求出,则;(2)由可得:,分类讨论,当时,解得:,当时,若,则应满足,即,所以,因此满足的实数的取值范围是:或。试题解析:(1):由得:, =(2)当B=时,当时,即或 。考点:1.函数的定义域;2.集合的运算;3.集合间的关系。22【答案】 【解析】解:(1)函数函数f(x)=2sin(2x+)f(x)的周期T=即T=(2),1sin(2x+)2最大值2,2x=,此时,最小值1,2x= 此时【点评】本题简单的考察了三角函数的性质,单调性,周期性,熟练化为一个角的三角函数形式即可23【答案】 【解析】解:(1)依题意,可设椭圆C的方程为(a0,b0),且可知左焦点为F(2,0),从而有,解得c=2,a=4,又a2=b2+c2,所以b2=12,故椭圆C的方程为(2)假设存在符合题意的直线l,其方程为y=x+t,由得3x2+3tx+t212=0,因为直线l与椭圆有公共点,所以有=(3t)243(t212)0,解得4t4,另一方面,由直线OA与l的距离4=,从而t=2,由于24,4,所以符合题意的直线l不存在【点评】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西药批发企业运营优化与效率改进考核试卷
- 资产管理中的资产联动性分析考核试卷
- 盾构机施工中的隧道工程生命周期管理考核试卷
- 胸痛护理临床规范与流程
- 绘本馆与儿童教育机构合作项目协议
- 网络零售债务解决与风险控制协议
- 生物医药研发首席科学家聘用与成果转化实施协议
- 工业废气排放在线监测与综合运维管理协议
- 环保型建筑材料研发与市场推广合同
- 电商平台市场趋势分析工具委托开发协议
- DB37-T 3587-2019养老机构护理型床位认定
- 汽车电子可靠性测试项目-(全)-16750-1-to-5
- 丁苯橡胶乳液聚合的生产工艺
- JOINT VENTURE AGREEMENT合资企业协议(双语版)
- CJ343-2010 污水排入城镇下水道水质标准
- 内科、外科护理考核试题及答案
- 红字发票信息确认单
- 康复心理学心理评估课件
- 《常用偏旁名称表》
- 《民事诉讼法》 本科课件第16章 简易程序
- 标准名称中华人民共和国卫生部救护车专业标准
评论
0/150
提交评论