济南市实验中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
济南市实验中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
济南市实验中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
济南市实验中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
济南市实验中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷济南市实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知全集为,且集合,则等于( )A B C D【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.2 设数集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,如果把ba叫做集合x|axb的“长度”,那么集合MN的“长度”的最小值是( )ABCD3 复数z=(mR,i为虚数单位)在复平面上对应的点不可能位于( )A第一象限B第二象限C第三象限D第四象限4 如图所示,在平行六面体ABCDA1B1C1D1中,点E为上底面对角线A1C1的中点,若=+x+y,则( ) Ax=Bx=Cx=Dx=5 已知x1,则函数的最小值为( )A4B3C2D16 设变量x,y满足约束条件,则目标函数z=4x+2y的最大值为( )A12B10C8D27 下列函数中,在区间(0,+)上为增函数的是( )Ay=x1By=()xCy=x+Dy=ln(x+1)8 在ABC中,角A,B,C所对的边分别为a,b,c,若(acosB+bcosA)=2csinC,a+b=8,且ABC的面积的最大值为4,则此时ABC的形状为( )A等腰三角形B正三角形C直角三角形D钝角三角形9 函数是指数函数,则的值是( )A4 B1或3 C3 D110命题:“x0,都有x2x0”的否定是( )Ax0,都有x2x0Bx0,都有x2x0Cx0,使得x2x0Dx0,使得x2x011已知点F是抛物线y2=4x的焦点,点P在该抛物线上,且点P的横坐标是2,则|PF|=( )A2B3C4D512如图F1、F2是椭圆C1: +y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是( )ABCD二、填空题13在复平面内,记复数+i对应的向量为,若向量饶坐标原点逆时针旋转60得到向量所对应的复数为14若函数y=ln(2x)为奇函数,则a=15三角形中,则三角形的面积为 .16f(x)=x(xc)2在x=2处有极大值,则常数c的值为 14已知集合,若3M,5M,则实数a的取值范围是17抛物线的焦点为,经过其准线与轴的交点的直线与抛物线切于点,则外接圆的标准方程为_.18已知集合M=x|x|2,xR,N=xR|(x3)lnx2=0,那么MN=三、解答题19已知函数f(x)=2x24x+a,g(x)=logax(a0且a1)(1)若函数f(x)在1,3m上不具有单调性,求实数m的取值范围;(2)若f(1)=g(1)求实数a的值;设t1=f(x),t2=g(x),t3=2x,当x(0,1)时,试比较t1,t2,t3的大小 20已知函数y=x+有如下性质:如果常数t0,那么该函数在(0,上是减函数,在,+)上是增函数(1)已知函数f(x)=x+,x1,3,利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=x2a,若对任意x10,1,总存在x20,1,使得h(x2)=g(x1)成立,求实数a的值 21(本小题满分10分)选修4-4:坐标系与参数方程已知椭圆的极坐标方程为,点为其左、右焦点,直线的参数方程为(为参数,).(1)求直线和曲线的普通方程;(2)求点到直线的距离之和.22已知集合A=x|1,xR,B=x|x22xm0()当m=3时,求;A(RB);()若AB=x|1x4,求实数m的值23某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元()若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,nN)的函数解析式f(n);()该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得表:周需求量n1819202122频数12331以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望24为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:(1)求出频率分布表中、的值;(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S的值 序号(i)分组(分数)组中值(Gi)频数(人数)频率(Fi)160,70)650.10270,80)7520380,90)850.20490,100)95合计501济南市实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C 2 【答案】C【解析】解:集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,根据题意,M的长度为,N的长度为,当集合MN的长度的最小值时,M与N应分别在区间0,1的左右两端,故MN的长度的最小值是=故选:C3 【答案】C【解析】解:z=+i,当1+m0且1m0时,有解:1m1;当1+m0且1m0时,有解:m1;当1+m0且1m0时,有解:m1;当1+m0且1m0时,无解;故选:C【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题4 【答案】A【解析】解:根据题意,得;=+(+)=+=+,又=+x+y,x=,y=,故选:A【点评】本题考查了空间向量的应用问题,是基础题目5 【答案】B【解析】解:x1x10由基本不等式可得, 当且仅当即x1=1时,x=2时取等号“=”故选B6 【答案】B【解析】解:本题主要考查目标函数最值的求法,属于容易题,做出可行域,由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时,z取得最大值107 【答案】 D【解析】解:y=x1在区间(0,+)上为减函数,y=()x是减函数,y=x+,在(0,1)是减函数,(1,+)上为,增函数,y=lnx在区间(0,+)上为增函数,A,B,C不正确,D正确,故选:D【点评】本题考查了基本的函数的单调区间,属于基本题目,关键掌握好常见的函数的单调区间8 【答案】A【解析】解:(acosB+bcosA)=2csinC,(sinAcosB+sinBcosA)=2sin2C,sinC=2sin2C,且sinC0,sinC=,a+b=8,可得:82,解得:ab16,(当且仅当a=b=4成立)ABC的面积的最大值SABC=absinC=4,a=b=4,则此时ABC的形状为等腰三角形故选:A9 【答案】C【解析】考点:指数函数的概念10【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:x0,使得x2x0,故选:C【点评】本题主要考查含有量词的命题 的否定,比较基础11【答案】B【解析】解:抛物线y2=4x的准线方程为:x=1,P到焦点F的距离等于P到准线的距离,P的横坐标是2,|PF|=2+1=3故选:B【点评】本题考查抛物线的性质,利用抛物线定义是解题的关键,属于基础题12【答案】 D【解析】解:设|AF1|=x,|AF2|=y,点A为椭圆C1: +y2=1上的点,2a=4,b=1,c=;|AF1|+|AF2|=2a=4,即x+y=4;又四边形AF1BF2为矩形,+=,即x2+y2=(2c)2=12,由得:,解得x=2,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|AF1|=yx=2,2n=2c=2,双曲线C2的离心率e=故选D【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题二、填空题13【答案】2i 【解析】解:向量饶坐标原点逆时针旋转60得到向量所对应的复数为(+i)(cos60+isin60)=(+i)()=2i,故答案为 2i【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60得到向量对应的复数为(+i)(cos60+isin60),是解题的关键14【答案】4 【解析】解:函数y=ln(2x)为奇函数,可得f(x)=f(x),ln(+2x)=ln(2x)ln(+2x)=ln()=ln()可得1+ax24x2=1,解得a=4故答案为:415【答案】【解析】试题分析:因为中,由正弦定理得,又,即,所以,考点:正弦定理,三角形的面积【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答解三角形时三角形面积公式往往根据不同情况选用不同形式,等等16【答案】6 【解析】解:f(x)=x32cx2+c2x,f(x)=3x24cx+c2,f(2)=0c=2或c=6若c=2,f(x)=3x28x+4,令f(x)0x或x2,f(x)0x2,故函数在(,)及(2,+)上单调递增,在(,2)上单调递减,x=2是极小值点故c=2不合题意,c=6故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式17【答案】或【解析】试题分析:由题意知,设,由,则切线方程为,代入得,则,可得,则外接圆以为直径,则或.故本题答案填或1考点:1.圆的标准方程;2.抛物线的标准方程与几何性质18【答案】1,1 【解析】解:合M=x|x|2,xR=x|2x2,N=xR|(x3)lnx2=0=3,1,1,则MN=1,1,故答案为:1,1,【点评】本题主要考查集合的基本运算,比较基础三、解答题19【答案】 【解析】解:(1)因为抛物线y=2x24x+a开口向上,对称轴为x=1,所以函数f(x)在(,1上单调递减,在1,+)上单调递增,因为函数f(x)在1,3m上不单调,所以3m1,(2分)得,(3分)(2)因为f(1)=g(1),所以2+a=0,(4分)所以实数a的值为2因为t1=f(x)=x22x+1=(x1)2,t2=g(x)=log2x,t3=2x,所以当x(0,1)时,t1(0,1),(7分)t2(,0),(9分)t3(1,2),(11分)所以t2t1t3(12分)【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键20【答案】 【解析】解:(1)由已知可以知道,函数f(x)在x1,2上单调递减,在x2,3上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)f(3)所以f(x)max=f(1)=5所以f(x)在x1,3的值域为4,5(2)y=g(x)=2x+1+8设=2x+1,x0,1,13,则y=8,由已知性质得,当1u2,即0x时,g(x)单调递减,所以递减区间为0,;当2u3,即x1时,g(x)单调递增,所以递增区间为,1;由g(0)=3,g()=4,g(1)=,得g(x)的值域为4,3因为h(x)=x2a为减函数,故h(x)12a,2a,x0,1根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a= 21【答案】(1)直线的普通方程为,曲线的普通方程为;(2)【解析】试题分析:(1)由公式可化极坐标方程为直角坐标方程,利用消参法可化参数方程为普通方程;考点:极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化,点到直线的距离公式22【答案】 【解析】解:(1)当m=3时,由x22x301x3,由11x5,AB=x|1x3;(2)若AB=x|1x4,A=(1,5),4是方程x22xm=0的一个根,m=8,此时B=(2,4),满足AB=(1,4)m=823【答案】 【解析】解:(I)当n20时,f(n)=50020+200(n20)=200n+6000,当n19时,f(n)=500n100(20n)=600n2000,( II)由(1)得f(18)=8800,f(19)=9400,f(20)=10000,f(21)=10200,f(22)=10400,P(X=8800)=0.1,P(X=9400)=0.2,P(X=10000)=0.3,P(X=10200)=0.3,P(X=10400)=0.1,X的分布列为X88009400100001020010400P0.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论