2018高考数学复习第八章立体几何课时达标检测四十一利用空间向量求空间角理.docx_第1页
2018高考数学复习第八章立体几何课时达标检测四十一利用空间向量求空间角理.docx_第2页
2018高考数学复习第八章立体几何课时达标检测四十一利用空间向量求空间角理.docx_第3页
2018高考数学复习第八章立体几何课时达标检测四十一利用空间向量求空间角理.docx_第4页
2018高考数学复习第八章立体几何课时达标检测四十一利用空间向量求空间角理.docx_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时达标检测(四十一) 利用空间向量求空间角一、全员必做题1已知直三棱柱ABCA1B1C1,ACB90,CACBCC1,D为B1C1的中点,求异面直线BD和A1C所成角的余弦值解:如图所示,以C为坐标原点,CA,CB,CC1所在直线分别为x轴,y轴,z轴建立空间直角坐标系设CACBCC12,则A1(2,0,2),C(0,0,0),B(0,2,0),D(0,1,2),(0,1,2),(2,0,2),cos,.异面直线BD与A1C所成角的余弦值为.2(2016大连二模)如图,在直三棱柱ABCA1B1C1中,ABBC,AA12,AC2.M是CC1的中点,P是AM的中点,点Q在线段BC1上,且BQQC1.(1)证明:PQ平面ABC;(2)若直线BA1与平面ABM所成角的正弦值为,求BAC的大小解:(1)取MC的中点,记为点D,连接PD,QD.P为MA的中点,D为MC的中点,PDAC.又CDDC1,BQQC1,QDBC.又PDQDD,平面PQD平面ABC.又PQ平面PQD,PQ平面ABC.(2)BC,BA,BB1两两互相垂直,以B为坐标原点,分别以BC,BA,BB1所在的直线为x,y,z轴建立如图所示的空间直角坐标系Bxyz,设BCa,BAb,则各点的坐标分别为B(0,0,0),C(a,0,0),A(0,b,0),A1(0,b,2),M(a,0,1),(0,b,2),(0,b,0),(a,0,1)设平面ABM的法向量为n(x,y,z),则取x1,则可得平面ABM的一个法向量为n(1,0,a),|cosn,|,又a2b28,a44a2120,a22或6(舍),即a.sinBAC,BAC.3.如图,在四棱锥PABCD中,PA平面ABCD,ABC90,ABCADC,PAAC2AB2,E是线段PC的中点(1)求证:DE平面PAB;(2)求二面角DCPB的余弦值解:(1)证明:以B为坐标原点,BA所在的直线为x轴,BC所在的直线为y轴,过点B且与平面ABC垂直的直线为z轴,建立空间直角坐标系如图所示则B(0,0,0),C(0,0),P(1,0,2),D,A(1,0,0),E,(1,0,1),(1,0,2),(1,0,0)设平面PAB的法向量为n(a,b,c),则n(0,1,0)为平面PAB的一个法向量又n0,DE平面PAB,DE平面PAB.(2)由(1)易知(0,0),设平面PBC的法向量为n1(x1,y1,z1),则令x12,则y10,z11,n1(2,0,1)为平面PBC的一个法向量设平面DPC的法向量为n2(x2,y2,z2),则令x21,则y2,z21,n2(1,1)为平面DPC的一个法向量cosn1,n2,故二面角DCPB的余弦值为.二、重点选做题1.如图,在四棱锥PABCD中,ADBC,平面APD平面ABCD,PAPD,E在AD上,且ABBCCDDEEA2.(1)求证:平面PEC平面PBD;(2)设直线PB与平面PEC所成的角为,求平面APB与平面PEC所成的锐二面角的余弦值解:(1)证明:连接BE.在PAD中,PAPD,AEED,所以PEAD.又平面APD平面ABCD,平面APD平面ABCDAD,所以PE平面ABCD,又BD平面ABCD,故PEBD.在四边形ABCD中,BCDE,且BCDE,所以四边形BCDE为平行四边形,又BCCD,所以四边形BCDE为菱形,故BDCE,又PEECE,所以BD平面PEC,又BD平面PBD,所以平面PEC平面PBD.(2)取BC的中点F,连接EF.由(1)可知,BCE是一个正三角形,所以EFBC,又BCAD,所以EFAD.又PE平面ABCD,故以E为坐标原点,分别以直线EF、直线ED、直线EP为x轴、y轴、z轴,建立如图所示的空间直角坐标系设PEt(t0),则D(0,2,0),A(0,2,0),P(0,0,t),F(,0,0),B(,1,0)因为BD平面PEC,所以(,3,0)是平面PEC的一个法向量,又(,1,t),所以cos,.由已知可得sin|cos,|,得t2(负值舍去)故P(0,0,2),(,1,2),(,1,0)设平面APB的法向量为n(x,y,z),则由可得取y,则x,z,故n(,)为平面APB的一个法向量,所以cos,n.设平面APB与平面PEC所成的锐二面角为,则cos |cos,n|.2如图1,正方形ABCD的边长为4,ABAEBFEF,ABEF,把四边形ABCD沿AB折起,使得AD平面AEFB,G是EF的中点,如图2.(1)求证:AG平面BCE;(2)求二面角CAEF的余弦值解:(1)证明:连接BG,因为BCAD,AD底面AEFB,所以BC底面AEFB,又AG底面AEFB,所以BCAG,因为AB綊EG,ABAE,所以四边形ABGE为菱形,所以AGBE,又BCBEB,BE平面BCE,BC平面BCE,所以AG平面BCE.(2)由(1)知四边形ABGE为菱形,AGBE,AEEGBGAB4,设AGBEO,所以OEOB2,OAOG2,以O为坐标原点,建立如图所示的空间直角坐标系,则O(0,0,0),A(2,0,0),E(0,2,0),F(4,2,0),C(0,2,4),D(2,0,4),所以(2,2,4),(2,2,0),设平面ACE的法向量为n(x,y,z),则所以令y1,则x,z,即平面ACE的一个法向量为n(,1,),易知平面AEF的一个法向量为(0,0,4),设二面角CAEF的大小为,由图易知,所以cos .三、冲刺满分题1(2016四川高考)如图,在四棱锥 PABCD中,ADBC,ADCPAB90,BCCDAD,E为棱AD的中点,异面直线PA与CD所成的角为90.(1)在平面PAB内找一点M,使得直线CM平面PBE,并说明理由;(2)若二面角PCDA的大小为45,求直线PA与平面PCE所成角的正弦值解:(1)在梯形ABCD中,AB与CD不平行如图,延长AB,DC相交于点M(M平面PAB),点M即为所求的一个点理由如下:由已知,知BCED,且BCED,所以四边形BCDE是平行四边形,从而CMEB.又EB平面PBE,CM平面PBE,所以CM平面PBE.(2)由已知,CDPA,CDAD,PAADA,所以CD平面PAD,从而CDPD,所以PDA是二面角PCDA的平面角,所以PDA45.因为PAAB,所以PA平面ABCD.设BC1,则在RtPAD中,PAAD2,作Ay平面PAD,以A为原点,以,的方向分别为x轴、z轴的正方向,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以(1,0,2),(1,1,0),(0,0,2)设平面PCE的法向量为n(x,y,z),由得令x2,则n(2,2,1)设直线PA与平面PCE所成角为,则sin ,所以直线PA与平面PCE所成角的正弦值为.2.如图,在三棱柱ABC A1B1C1中,已知AB侧面BB1C1C,ABBC1,BB12,BCC1.(1)求证:BC1平面ABC;(2)设 (01),且平面AB1E与BB1E所成的锐二面角的大小为30,试求的值解:(1)证明:因为AB侧面BB1C1C,BC1侧面BB1C1C,故ABBC1,在BCC1中,BC1,CC1BB12,BCC1,所以BCBC2CC2BCCC1cosBCC11222212cos3,所以BC1,故BC2BCCC,所以BCBC1,而BCABB,所以BC1平面ABC.(2)由(1)可知,AB,BC,BC1两两垂直以B为原点,BC,BA,BC1所在直线分别为x轴,y轴,z轴建立空间直角坐标系则B(0,0,0),A(0,1,0),B1(1,0,),C(1,0,0),C1(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论