




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
奉化区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知tan=3,(0,),则cos(+2)=( )ABCD2 过抛物线焦点的直线与双曲线的一条渐近线平行,并交其抛物线于、两点,若,且,则抛物线方程为( )A B C D【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力3 已知向量=(1,),=(,x)共线,则实数x的值为( )A1BC tan35Dtan354 已知向量=(1,2),=(x,4),若,则x=( ) A 4 B 4 C 2 D 25 一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是( )A8cm2B12cm2C16cm2D20cm26 对于任意两个正整数m,n,定义某种运算“”如下:当m,n都为正偶数或正奇数时,mn=m+n;当m,n中一个为正偶数,另一个为正奇数时,mn=mn则在此定义下,集合M=(a,b)|ab=12,aN*,bN*中的元素个数是( )A10个B15个C16个D18个7 等比数列的前n项,前2n项,前3n项的和分别为A,B,C,则( )AB2=ACBA+C=2BCB(BA)=A(CA)DB(BA)=C(CA)8 已知命题p:x(0,+),log2xlog3x命题q:xR,x3=1x2则下列命题中为真命题的是( )ApqBpqCpqDpq9 已知全集U=R,集合M=x|2x12和N=x|x=2k1,k=1,2,的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有( )A3个B2个C1个D无穷多个10四面体 中,截面 是正方形, 则在下列结论中,下列说法错误的是( ) A B C. D异面直线与所成的角为11与向量=(1,3,2)平行的一个向量的坐标是( )A(,1,1)B(1,3,2)C(,1)D(,3,2) 12已知函数与轴的交点为,且图像上两对称轴之间的最小距离为,则使成立的的最小值为( )1111A B C D二、填空题13已知f(x),g(x)都是定义在R上的函数,g(x)0,f(x)g(x)f(x)g(x),且f(x)=axg(x)(a0且a1),+=若数列的前n项和大于62,则n的最小值为14已知x,y满足条件,则函数z=2x+y的最大值是15设Sn是数列an的前n项和,且a1=1, =Sn则数列an的通项公式an=16若执行如图3所示的框图,输入,则输出的数等于 。17已知数列1,a1,a2,9是等差数列,数列1,b1,b2,b3,9是等比数列,则的值为18已知角终边上一点为P(1,2),则值等于三、解答题19(本小题满分12分)已知函数,设,其中,.(1)若函数在区间上单调递增,求实数的取值范围; (2)记,求证:.20求下列曲线的标准方程:(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线求双曲线C的方程(2)焦点在直线3x4y12=0 的抛物线的标准方程21(本小题满分12分)的内角所对的边分别为,垂直.(1)求的值;(2)若,求的面积的最大值.22如图,在四棱柱ABCDA1B1C1D1中,底面ABCD是矩形,且AD=2CD=2,AA1=2,A1AD=若O为AD的中点,且CDA1O()求证:A1O平面ABCD;()线段BC上是否存在一点P,使得二面角DA1AP为?若存在,求出BP的长;不存在,说明理由23设点P的坐标为(x3,y2)(1)在一个盒子中,放有标号为1,2,3的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为x、y,求点P在第二象限的概率;(2)若利用计算机随机在区间上先后取两个数分别记为x、y,求点P在第三象限的概率24在ABC中,内角A,B,C的对边分别为a、b、c,且bsinA=acosB(1)求B;(2)若b=2,求ABC面积的最大值奉化区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:tan=3,cos(+2)=cos(+2)=sin2=2sincos=故选:C2 【答案】C【解析】由已知得双曲线的一条渐近线方程为,设,则,所以,解得或,因为,故,故,所以抛物线方程为3 【答案】B【解析】解:向量=(1,),=(,x)共线,x=,故选:B【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题4 【答案】D【解析】: 解:,42x=0,解得x=2故选:D5 【答案】B【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R,R=,S=4R2=12故选B6 【答案】B【解析】解:ab=12,a、bN*,若a和b一奇一偶,则ab=12,满足此条件的有112=34,故点(a,b)有4个;若a和b同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a,b)有261=11个,所以满足条件的个数为4+11=15个故选B7 【答案】C【解析】解:若公比q=1,则B,C成立;故排除A,D;若公比q1,则A=Sn=,B=S2n=,C=S3n=,B(BA)=()=(1qn)(1qn)(1+qn)A(CA)=()=(1qn)(1qn)(1+qn);故B(BA)=A(CA);故选:C【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力8 【答案】 B【解析】解:命题p:取x1,+),log2xlog3x,因此p是假命题命题q:令f(x)=x3(1x2),则f(0)=10,f(1)=10,f(0)f(1)0,x0(0,1),使得f(x0)=0,即xR,x3=1x2因此q是真命题可得pq是真命题故选:B【点评】本题考查了对数函数的单调性、函数零点存在定理、复合命题的判定方法,考查了推理能力,属于基础题9 【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为MN,又由M=x|2x12得1x3,即M=x|1x3,在此范围内的奇数有1和3所以集合MN=1,3共有2个元素,故选B10【答案】B【解析】试题分析:因为截面是正方形,所以,则平面平面,所以,由可得,所以A正确;由于可得截面,所以C正确;因为,所以,由,所以是异面直线与所成的角,且为,所以D正确;由上面可知,所以,而,所以,所以B是错误的,故选B. 1考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键.11【答案】C【解析】解:对于C中的向量:(,1)=(1,3,2)=,因此与向量=(1,3,2)平行的一个向量的坐标是故选:C【点评】本题考查了向量共线定理的应用,属于基础题12【答案】A【解析】考点:三角函数的图象性质二、填空题13【答案】1 【解析】解:x为实数,x表示不超过x的最大整数,如图,当x0,1)时,画出函数f(x)=xx的图象,再左右扩展知f(x)为周期函数结合图象得到函数f(x)=xx的最小正周期是1故答案为:1【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用14【答案】4 【解析】解:由约束条件作出可行域如图,化目标函数z=2x+y为y=2x+z,由图可知,当直线y=2x+z过点A(2,0)时,直线y=2x+z在y轴上的截距最大,即z最大,此时z=2(2)+0=4故答案为:4【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题15【答案】 【解析】解:Sn是数列an的前n项和,且a1=1, =Sn,Sn+1Sn=Sn+1Sn,=1, =1,是首项为1,公差为1的等差数列,=1+(n1)(1)=nSn=,n=1时,a1=S1=1,n2时,an=SnSn1=+=an=故答案为:16【答案】【解析】由框图的算法功能可知,输出的数为三个数的方差,则。17【答案】 【解析】解:已知数列1,a1,a2,9是等差数列,a1+a2 =1+9=10数列1,b1,b2,b3,9是等比数列, =19,再由题意可得b2=1q20 (q为等比数列的公比),b2=3,则=,故答案为【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题18【答案】 【解析】解:角终边上一点为P(1,2),所以tan=2=故答案为:【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力三、解答题19【答案】(1).(2)证明见解析.【解析】试题解析:解:(1)函数,1111所以函数,函数在区间上单调递增,在区间上恒成立,所以在上恒成立.令,则,当时,实数的取值范围为.(2),令,则111.令,则,显然在区间上单调递减,在区间上单调递增,则,则,故.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值【方法点晴】本题主要考查导数在解决函数问题中的应用.考查利用导数证明不等式成立.(1)利用导数的工具性求解实数的取值范围;(2)先写出具体函数,通过观察的解析式的形式,能够想到解析式里可能存在完全平方式,所以试着构造完全平方式并放缩,所以只需证明放缩后的式子大于等于即可,从而对新函数求导判单调性求出最值证得成立. 20【答案】 【解析】解:(1)由椭圆+=1,得a2=8,b2=4,c2=a2b2=4,则焦点坐标为F(2,0),直线y=x为双曲线的一条渐近线,设双曲线方程为(0),即,则+3=4,=1双曲线方程为:;(2)由3x4y12=0,得,直线在两坐标轴上的截距分别为(4,0),(0,3),分别以(4,0),(0,3)为焦点的抛物线方程为:y2=16x或x2=12y【点评】本题考查椭圆方程和抛物线方程的求法,对于(1)的求解,设出以直线为一条渐近线的双曲线方程是关键,是中档题21【答案】(1);(2)4【解析】试题分析:(1)由向量垂直知两向量的数量积为0,利用数量积的坐标运算公式可得关于的等式,从而可借助正弦定理化为边的关系,最后再余弦定理求得,由同角关系得;(2)由于已知边及角,因此在(1)中等式中由基本不等式可求得,从而由公式可得面积的最大值试题解析:(1),垂直,考点:向量的数量积,正弦定理,余弦定理,基本不等式11122【答案】 【解析】满分(13分)()证明:A1AD=,且AA1=2,AO=1,A1O=,(2分)+AD2=AA12,A1OAD(3分)又A1OCD,且CDAD=D,A1O平面ABCD(5分)()解:过O作OxAB,以O为原点,建立空间直角坐标系Oxyz(如图),则A(0,1,0),A1(0,0,),(6分)设P(1,m,0)m1,1,平面A1AP的法向量为=(x,y,z),=, =(1,m+1,0),且取z=1,得=(8分)又A1O平面ABCD,A1O平面A1ADD1平面A1ADD1平面ABCD又CDAD,且平面A1ADD1平面ABCD=AD,CD平面A1ADD1不妨设平面A1ADD1的法向量为=(1,0,0)(10分)由题意得=,(12分)解得m=1或m=3(舍去)当BP的长为2时,二面角DA1AP的值为(13分)【点评】本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想23【答案】 【解析】解:(1)由已知得,基本事件(2,1),(2,0),(2,1),(1,1),(1,0),(1,1),(0,1),(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 液晶显示器件彩膜制造工测试考核试卷及答案
- 化学浆料处理方法流程考核试卷及答案
- 金属焊接接缝密封工艺考核试卷及答案
- 塑胶场地紫外线防护施工技术规范考核试卷及答案
- 古建琉璃工综合考核试卷及答案
- 茶叶采摘机操作工数字化技能考核试卷及答案
- 河北省石家庄精英新华学校2025-2026学年上册七年级开学数学试卷(含部分答案)
- 医院技术面试题目及答案
- 三端集成稳压器等多领域知识测试卷
- 2025-2026学年赣美版(2024)小学美术三年级上册《团花剪纸》教学设计
- 2025年工地安全员培训考试试题及答案
- 文明有礼+课件-2025-2026学年统编版道德与法治八年级上册
- 供水设备运行维护与保养技术方案
- 木雕工艺课件
- 2025年2个清单28个问题查摆整改措施
- 摩擦力影响因素实验报告范本
- 教育系统应急知识培训课件
- 基坑防护课件
- 2025年黑龙江省龙东地区中考英语真题含答案
- 医疗器械生产质量管理规范2025版
- 2025年医护人员法律法规知识考试题库及答案(一)
评论
0/150
提交评论