




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
南安市三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 下列说法正确的是( )A类比推理是由特殊到一般的推理B演绎推理是特殊到一般的推理C归纳推理是个别到一般的推理D合情推理可以作为证明的步骤2 已知是虚数单位,若复数()的实部与虚部相等,则( )A B C D 3 已知不等式组表示的平面区域为,若内存在一点,使,则的取值范围为( )A B C D4 下列各组表示同一函数的是( )Ay=与y=()2By=lgx2与y=2lgxCy=1+与y=1+Dy=x21(xR)与y=x21(xN)5 如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆在扇形OAB内随机取一点,则此点取自阴影部分的概率是( )A1BCD6 已知函数f(x)=3cos(2x),则下列结论正确的是( )A导函数为B函数f(x)的图象关于直线对称C函数f(x)在区间(,)上是增函数D函数f(x)的图象可由函数y=3co s2x的图象向右平移个单位长度得到7 下面的结构图,总经理的直接下属是( )A总工程师和专家办公室B开发部C总工程师、专家办公室和开发部D总工程师、专家办公室和所有七个部8 函数y=sin2x+cos2x的图象,可由函数y=sin2xcos2x的图象( )A向左平移个单位得到B向右平移个单位得到C向左平移个单位得到D向左右平移个单位得到9 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S的值为( )A9.6B7.68C6.144D4.915210在ABC中,若2cosCsinA=sinB,则ABC的形状是( )A直角三角形B等边三角形C等腰直角三角形D等腰三角形11是平面内不共线的两向量,已知,若三点共线,则的值是( )A1 B2 C-1 D-212 在区间上恒正,则的取值范围为( )A B C D以上都不对二、填空题13曲线在点(3,3)处的切线与轴x的交点的坐标为14若非零向量,满足|+|=|,则与所成角的大小为15已知f(x),g(x)都是定义在R上的函数,且满足以下条件:f(x)=axg(x)(a0,a1);g(x)0;f(x)g(x)f(x)g(x);若,则a=16已知f(x+1)=f(x1),f(x)=f(2x),方程f(x)=0在0,1内只有一个根x=,则f(x)=0在区间0,2016内根的个数17已知f(x)x(exaex)为偶函数,则a_18已知一组数据,的方差是2,另一组数据,()的标准差是,则 三、解答题19设函数f(x)=lnxax2bx(1)当a=2,b=1时,求函数f(x)的单调区间;(2)令F(x)=f(x)+ax2+bx+(2x3)其图象上任意一点P(x0,y0)处切线的斜率k恒成立,求实数a的取值范围;(3)当a=0,b=1时,方程f(x)=mx在区间1,e2内有唯一实数解,求实数m的取值范围 20已知椭圆C: +=1(ab0)与双曲线y2=1的离心率互为倒数,且直线xy2=0经过椭圆的右顶点()求椭圆C的标准方程;()设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求OMN面积的取值范围21(本小题满分12分)已知等差数列的前项和为,且,(1)求的通项公式和前项和;(2)设,为数列的前项和,若不等式对于任意的恒成立,求实数的取值范围22已知函数f(x)=2|x2|+ax(xR)(1)当a=1时,求f(x)的最小值;(2)当f(x)有最小值时,求a的取值范围;(3)若函数h(x)=f(sinx)2存在零点,求a的取值范围23已知函数f(x)=x2ax+(a1)lnx(a1)() 讨论函数f(x)的单调性;() 若a=2,数列an满足an+1=f(an)(1)若首项a1=10,证明数列an为递增数列;(2)若首项为正整数,且数列an为递增数列,求首项a1的最小值 24【常州市2018届高三上武进区高中数学期中】已知函数,若曲线在点处的切线经过点,求实数的值;若函数在区间上单调,求实数的取值范围;设,若对,使得成立,求整数的最小值南安市三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题2 【答案】A考点:复数运算3 【答案】A 【解析】解析:本题考查线性规划中最值的求法平面区域如图所示,先求的最小值,当时,在点取得最小值;当时,在点取得最小值若内存在一点,使,则有的最小值小于,或,选A4 【答案】C【解析】解:Ay=|x|,定义域为R,y=()2=x,定义域为x|x0,定义域不同,不能表示同一函数By=lgx2,的定义域为x|x0,y=2lgx的定义域为x|x0,所以两个函数的定义域不同,所以不能表示同一函数C两个函数的定义域都为x|x0,对应法则相同,能表示同一函数D两个函数的定义域不同,不能表示同一函数故选:C【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数5 【答案】A【解析】解:设扇形的半径为r,则扇形OAB的面积为,连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:,此点取自阴影部分的概率是故选A6 【答案】B【解析】解:对于A,函数f(x)=3sin(2x)2=6sin(2x),A错误;对于B,当x=时,f()=3cos(2)=3取得最小值,所以函数f(x)的图象关于直线对称,B正确;对于C,当x(,)时,2x(,),函数f(x)=3cos(2x)不是单调函数,C错误;对于D,函数y=3co s2x的图象向右平移个单位长度,得到函数y=3co s2(x)=3co s(2x)的图象,这不是函数f(x)的图象,D错误故选:B【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目7 【答案】C【解析】解:按照结构图的表示一目了然,就是总工程师、专家办公室和开发部读结构图的顺序是按照从上到下,从左到右的顺序故选C【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读8 【答案】C【解析】解:y=sin2x+cos2x=sin(2x+),y=sin2xcos2x=sin(2x)=sin2(x)+),由函数y=sin2xcos2x的图象向左平移个单位得到y=sin(2x+),故选:C【点评】本题主要考查三角函数的图象关系,利用辅助角公式将函数化为同名函数是解决本题的关键9 【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(120%)x,结合程序框图易得当n=4时,S=15(120%)4=6.144故选:C10【答案】D【解析】解:A+B+C=180,sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,sinCcosAsinAcosC=0,即sin(CA)=0,A=C 即为等腰三角形故选:D【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础11【答案】B【解析】考点:向量共线定理12【答案】C【解析】试题分析:由题意得,根据一次函数的单调性可知,函数在区间上恒正,则,即,解得,故选C.考点:函数的单调性的应用.二、填空题13【答案】(,0) 【解析】解:y=,斜率k=y|x=3=2,切线方程是:y3=2(x3),整理得:y=2x+9,令y=0,解得:x=,故答案为:【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题14【答案】90 【解析】解:=与所成角的大小为90故答案为90【点评】本题用向量模的平方等于向量的平方来去掉绝对值15【答案】 【解析】解:由得,所以又由f(x)g(x)f(x)g(x),即f(x)g(x)f(x)g(x)0,也就是,说明函数是减函数,即,故故答案为【点评】本题考查了应用导数判断函数的单调性,做题时应认真观察 16【答案】2016 【解析】解:f(x)=f(2x),f(x)的图象关于直线x=1对称,即f(1x)=f(1+x)f(x+1)=f(x1),f(x+2)=f(x),即函数f(x)是周期为2的周期函数,方程f(x)=0在0,1内只有一个根x=,由对称性得,f()=f()=0,函数f(x)在一个周期0,2上有2个零点,即函数f(x)在每两个整数之间都有一个零点,f(x)=0在区间0,2016内根的个数为2016,故答案为:201617【答案】【解析】解析:f(x)是偶函数,f(x)f(x)恒成立,即(x)(exaex)x(exaex),a(exex)(exex),a1.答案:118【答案】2【解析】试题分析:第一组数据平均数为,考点:方差;标准差三、解答题19【答案】 【解析】解:(1)依题意,知f(x)的定义域为(0,+)当a=2,b=1时,f(x)=lnxx2x,f(x)=2x1=令f(x)=0,解得x=当0x时,f(x)0,此时f(x)单调递增;当x时,f(x)0,此时f(x)单调递减所以函数f(x)的单调增区间(0,),函数f(x)的单调减区间(,+)(2)F(x)=lnx+,x2,3,所以k=F(x0)=,在x02,3上恒成立,所以a(x02+x0)max,x02,3当x0=2时,x02+x0取得最大值0所以a0(3)当a=0,b=1时,f(x)=lnx+x,因为方程f(x)=mx在区间1,e2内有唯一实数解,所以lnx+x=mx有唯一实数解m=1+,设g(x)=1+,则g(x)=令g(x)0,得0xe; g(x)0,得xe,g(x)在区间1,e上是增函数,在区间e,e2上是减函数,1 0分g(1)=1,g(e2)=1+=1+,g(e)=1+,所以m=1+,或1m1+ 20【答案】 【解析】解:()双曲线的离心率为,所以椭圆的离心率,又直线xy2=0经过椭圆的右顶点,右顶点为(2,0),即a=2,c=,b=1,椭圆方程为:()由题意可设直线的方程为:y=kx+m(k0,m0),M(x1,y1)、N(x2,y2)联立消去y并整理得:(1+4k2)x2+8kmx+4(m21)=0则,于是又直线OM、MN、ON的斜率依次成等比数列由m0得:又由=64k2m216(1+4k2)(m21)=16(4k2m2+1)0,得:0m22显然m21(否则:x1x2=0,则x1,x2中至少有一个为0,直线OM、ON中至少有一个斜率不存在,与已知矛盾) 设原点O到直线的距离为d,则故由m的取值范围可得OMN面积的取值范围为(0,1)【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力21【答案】【解析】【命题意图】本题考查等差数列通项与前项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用22【答案】 【解析】解:(1)当a=1时,f(x)=2|x2|+x=(2分)所以,f(x)在(,2)递减,在2,+)递增,故最小值为f(2)=2; (4分)(2)f(x)=,(6分)要使函数f(x)有最小值,需,2a2,(8分)故a的取值范围为2,2(9分)(3)sinx1,1,f(sinx)=(a2)sinx+4,“h(x)=f(sinx)2=(a2)sinx+2存在零点”等价于“方程(a2)sinx+2=0有解”,亦即有解,(11分)解得a0或a4,(13分)a的取值范围为(,04,+)(14分)【点评】本题主要考查分段函数的应用,利用分段函数的表达式结合一元二次函数的性质,是解决本题的关键23【答案】 【解析】解:(),(x0),当a=2时,则在(0,+)上恒成立,当1a2时,若x(a1,1),则f(x)0,若x(0,a1)或x(1,+),则f(x)0,当a2时,若x(1,a1),则f(x)0,若x(0,1)或x(a1,+),则f(x)0,综上所述:当1a2时,函数f(x)在区间(a1,1)上单调递减,在区间(0,a1)和(1,+)上单调递增;当a=2时,函数(0,+)在(0,+)上单调递增;当a2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a1,+)上单调递增()若a=2,则,由()知函数f(x)在区间(0,+)上单调递增,(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2a10,假设0akak+1(k1),因为函数f(x)在区间(0,+)上单调递增,f(ak+1)f(ak),即得ak+2ak+10,由数学归纳法原理知,an+1an对于一切正整数n都成立,数列an为递增数列(2)由(1)知:当且仅当0a1a2,数列an为递增数列,f(a1)a1,即(a1为正整数),设(x1),则,函数g(x)在区间上递增,由于,g(6)=ln60,又a1为正整数,首项a1的最小值为6【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分如果多做,则按所做的前两题计分【选修4-2:矩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年项目沟通技巧试题及答案
- 农村房产过户合同范例
- 2025年市政工程必考知识点试题及答案
- 2024水利水电工程考试资源整合试题及答案
- 市政工程设计中的互动经验试题及答案
- 农村绿化施工合同范例
- 中级经济师考试的区域竞争力评估试题及答案
- 2025年工程项目管理考试良策试题及答案
- 一级建造师执业合同范例
- 公司网络施工合同范例
- 毕业生就业意向调查表
- 微电网及储能技术
- 《食品安全事故处置方案》
- 国家电网招聘之其他工学类复习提高资料打印
- 婴儿抚触与婴儿操-婴儿抚触的手法(婴幼儿抚触与按摩课件)
- 学校食堂病媒生物防治管理制度范本(通用8篇)
- PID传感器CF值异丁烯标定
- 气排球记录方法五人制2017年5月9日
- 硕士研究生专业研究方向证明(模板)
- 戥秤使用技术
- 《钢铁制造流程介绍》
评论
0/150
提交评论