已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
光山县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 下列关系式中,正确的是( )A0B00C00D=02 设定义域为(0,+)的单调函数f(x),对任意的x(0,+),都有ff(x)lnx=e+1,若x0是方程f(x)f(x)=e的一个解,则x0可能存在的区间是( )A(0,1)B(e1,1)C(0,e1)D(1,e)3 已知全集,则( )A B C D4 如图可能是下列哪个函数的图象( )Ay=2xx21By=Cy=(x22x)exDy=5 我国古代名著九章算术用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”当输入a6 102,b2 016时,输出的a为( )A6B9C12D186 已知函数f(x)=log2(x2+1)的值域为0,1,2,则满足这样条件的函数的个数为( )A8B5C9D277 设函数y=的定义域为M,集合N=y|y=x2,xR,则MN=( )ABNC1,+)DM8 若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9 经过点且在两轴上截距相等的直线是( )A BC或 D或10函数f(x)=ax2+2(a1)x+2在区间(,4上为减函数,则a的取值范围为( )A0aB0aC0aDa 11在平行四边形ABCD中,AC为一条对角线, =(2,4),=(1,3),则等于( )A(2,4)B(3,5)C(3,5)D(2,4)12点A是椭圆上一点,F1、F2分别是椭圆的左、右焦点,I是AF1F2的内心若,则该椭圆的离心率为( )ABCD二、填空题13幂函数在区间上是增函数,则 14不等式的解为15已知f(x+1)=f(x1),f(x)=f(2x),方程f(x)=0在0,1内只有一个根x=,则f(x)=0在区间0,2016内根的个数16设函数f(x)是奇函数f(x)(xR)的导函数,f(1)=0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是17已知命题p:实数m满足m2+12a27am(a0),命题q:实数m满足方程+=1表示的焦点在y轴上的椭圆,且p是q的充分不必要条件,a的取值范围为18对于函数,“的图象关于y轴对称”是“”的 条件 (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)三、解答题19从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,计算得xi=80, yi=20, xiyi=184, xi2=720(1)求家庭的月储蓄对月收入的回归方程;(2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄20已知函数f(x)=的定义域为A,集合B是不等式x2(2a+1)x+a2+a0的解集() 求A,B;() 若AB=B,求实数a的取值范围21已知函数f(x)=aln(x+1)+x2x,其中a为非零实数()讨论f(x)的单调性;()若y=f(x)有两个极值点,且,求证:(参考数据:ln20.693) 22已知椭圆的左焦点为F,离心率为,过点M(0,1)且与x轴平行的直线被椭圆G截得的线段长为(I)求椭圆G的方程;(II)设动点P在椭圆G上(P不是顶点),若直线FP的斜率大于,求直线OP(O是坐标原点)的斜率的取值范围 23为了解某地区观众对大型综艺活动中国好声音的收视情况,随机抽取了100名观众进行调查,其中女性有55名下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数91011121314人数10182225205将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性()根据已知条件完成下面的22列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?非歌迷歌迷合计男女合计()将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率P(K2k)0.050.01k3.8416.635附:K2=24计算下列各式的值:(1)(2)(lg5)2+2lg2(lg2)2光山县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:对于A0,用“”不对,对于B和C,元素0与集合0用“”连接,故C正确;对于D,空集没有任何元素,0有一个元素,故不正确2 【答案】 D【解析】解:由题意知:f(x)lnx为常数,令f(x)lnx=k(常数),则f(x)=lnx+k由ff(x)lnx=e+1,得f(k)=e+1,又f(k)=lnk+k=e+1,所以f(x)=lnx+e,f(x)=,x0f(x)f(x)=lnx+e,令g(x)=lnx+e=lnx,x(0,+)可判断:g(x)=lnx,x(0,+)上单调递增,g(1)=1,g(e)=10,x0(1,e),g(x0)=0,x0是方程f(x)f(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题3 【答案】A考点:集合交集,并集和补集【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.4 【答案】 C【解析】解:A中,y=2xx21,当x趋向于时,函数y=2x的值趋向于0,y=x2+1的值趋向+,函数y=2xx21的值小于0,A中的函数不满足条件;B中,y=sinx是周期函数,函数y=的图象是以x轴为中心的波浪线,B中的函数不满足条件;C中,函数y=x22x=(x1)21,当x0或x2时,y0,当0x2时,y0;且y=ex0恒成立,y=(x22x)ex的图象在x趋向于时,y0,0x2时,y0,在x趋向于+时,y趋向于+;C中的函数满足条件;D中,y=的定义域是(0,1)(1,+),且在x(0,1)时,lnx0,y=0,D中函数不满足条件故选:C【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目5 【答案】【解析】选D.法一:6 1022 016354,2 016543718,54183,18是54和18的最大公约数,输出的a18,选D.法二:a6 102,b2 016,r54,a2 016,b54,r18,a54,b18,r0.输出a18,故选D.6 【答案】C【解析】解:令log2(x2+1)=0,得x=0,令log2(x2+1)=1,得x2+1=2,x=1,令log2(x2+1)=2,得x2+1=4,x=则满足值域为0,1,2的定义域有:0,1, ,0,1, ,0,1, ,0,1, ,0,1,1, ,0,1,1, ,0,1, ,0,1, ,0,1,1, 则满足这样条件的函数的个数为9故选:C【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题7 【答案】B【解析】解:根据题意得:x+10,解得x1,函数的定义域M=x|x1;集合N中的函数y=x20,集合N=y|y0,则MN=y|y0=N故选B8 【答案】A【解析】解:由奇函数的定义可知:若f(x)为奇函数,则任意x都有f(x)=f(x),取x=0,可得f(0)=0;而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,显然满足f(0)=0,但f(x)为偶函数由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0”的充分不必要条件故选:A9 【答案】D【解析】考点:直线的方程.10【答案】B【解析】解:当a=0时,f(x)=2x+2,符合题意当a0时,要使函数f(x)=ax2+2(a1)x+2在区间(,4上为减函数0a综上所述0a故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a的范围的问题,以及分类讨论的数学思想,属于基础题11【答案】C【解析】解:,=(3,5)故选:C【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力12【答案】B【解析】解:设AF1F2的内切圆半径为r,则SIAF1=|AF1|r,SIAF2=|AF2|r,SIF1F2=|F1F2|r,|AF1|r=2|F1F2|r|AF2|r,整理,得|AF1|+|AF2|=2|F1F2|a=2,椭圆的离心率e=故选:B二、填空题13【答案】【解析】【方法点睛】本题主要考查幂函数的定义与性质,属于中档题.幂函数定义与性质应用的三个关注点:(1)若幂函数是偶函数,则必为偶数当是分数时,一般将其先化为根式,再判断;(2)若幂函数在上单调递增,则,若在上单调递减,则;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 114【答案】x|x1或x0 【解析】解:即即x(x1)0解得x1或x0故答案为x|x1或x0【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法注意不等式的解以解集形式写出15【答案】2016 【解析】解:f(x)=f(2x),f(x)的图象关于直线x=1对称,即f(1x)=f(1+x)f(x+1)=f(x1),f(x+2)=f(x),即函数f(x)是周期为2的周期函数,方程f(x)=0在0,1内只有一个根x=,由对称性得,f()=f()=0,函数f(x)在一个周期0,2上有2个零点,即函数f(x)在每两个整数之间都有一个零点,f(x)=0在区间0,2016内根的个数为2016,故答案为:201616【答案】(,1)(0,1) 【解析】解:设g(x)=,则g(x)的导数为:g(x)=,当x0时总有xf(x)f(x)成立,即当x0时,g(x)恒小于0,当x0时,函数g(x)=为减函数,又g(x)=g(x),函数g(x)为定义域上的偶函数又g(1)=0,函数g(x)的大致图象如图所示:数形结合可得,不等式f(x)0xg(x)0或,0x1或x1f(x)0成立的x的取值范围是(,1)(0,1)故答案为:(,1)(0,1)17【答案】, 【解析】解:由m27am+12a20(a0),则3am4a即命题p:3am4a,实数m满足方程+=1表示的焦点在y轴上的椭圆,则,解得1m2,若p是q的充分不必要条件,则,解得,故答案为,【点评】本题考查充分条件、必要条件,一元二次不等式的解法,根据不等式的性质和椭圆的性质求出p,q的等价条件是解决本题的关键18【答案】必要而不充分【解析】试题分析:充分性不成立,如图象关于y轴对称,但不是奇函数;必要性成立,所以的图象关于y轴对称.考点:充要关系【名师点睛】充分、必要条件的三种判断方法1.定义法:直接判断“若p则q”、“若q则p”的真假并注意和图示相结合,例如“pq”为真,则p是q的充分条件2.等价法:利用pq与非q非p,qp与非p非q,pq与非q非p的等价关系,对于条件或结论是否定式的命题,一般运用等价法3.集合法:若AB,则A是B的充分条件或B是A的必要条件;若AB,则A是B的充要条件三、解答题19【答案】 【解析】解:(1)由题意,n=10, =xi=8, =yi=2,b=0.3,a=20.38=0.4,y=0.3x0.4;(2)b=0.30,y与x之间是正相关;(3)x=7时,y=0.370.4=1.7(千元)20【答案】 【解析】解:(),化为(x2)(x+1)0,解得x2或x1,函数f(x)=的定义域A=(,1)(2,+);由不等式x2(2a+1)x+a2+a0化为(xa)(xa1)0,又a+1a,xa+1或xa,不等式x2(2a+1)x+a2+a0的解集B=(,a)(a+1,+);()AB=B,AB,解得1a1实数a的取值范围1,121【答案】 【解析】解:()当a10时,即a1时,f(x)0,f(x)在(1,+)上单调递增;当0a1时,由f(x)=0得,故f(x)在上单调递增,在上单调递减,在上单调递增;当a0时,由f(x)=0得,f(x)在上单调递减,在上单调递增证明:()由(I)知,0a1,且,所以+=0,=a1由0a1得,01构造函数,设h(x)=2(x2+1)ln(x+1)2x+x2,x(0,1),则,因为0x1,所以,h(x)0,故h(x)在(0,1)上单调递增,所以h(x)h(0)=0,即g(x)0,所以g(x)在(0,1)上单调递增,所以,故 22【答案】 【解析】解:(I)椭圆的左焦点为F,离心率为,过点M(0,1)且与x轴平行的直线被椭圆G截得的线段长为点在椭圆G上,又离心率为,解得椭圆G的方程为(II)由(I)可知,椭圆G的方程为点F的坐标为(1,0)设点P的坐标为(x0,y0)(x01,x00),直线FP的斜率为k,则直线FP的方程为y=k(x+1),由方程组消去y0,并整理得又由已知,得,解得或1x00设直线OP的斜率为m,则直线OP的方程为y=mx由方程组消去y0,并整理得由1x00,得m2,x00,y00,m0,m(,),由x01,得,x00,y00,得m0,m直线OP(O是坐标原点)的斜率的取值范围是(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 救援安全课件
- 保险学原理习题及答案
- 安全管理课件分类
- 四川省交安A、B、C证考试题(含答案)
- 国家开放大学电大《财会法规与职业道德》试题及答案
- 国家工作人员学法用法考试题库(含答案)
- 机场空防安全课件
- 小企业管理必考题题库大全
- 下半年湖南省电机装配工:电力设施保护模拟试题
- 公开课消防安全课件
- 定额〔2025〕1号文-关于发布2018版电力建设工程概预算定额2024年度价格水平调整的通知
- JJG 52-2013弹性元件式一般压力表、压力真空表和真空表
- Q∕GDW 10364-2020 单相智能电能表技术规范
- 超星尔雅叶嘉莹《中华诗词之美》课后章节测验满分答案精编版
- 【学考】高中物理会考(学业水平考试)公式及知识点总结
- GB∕T 25279-2022 中空纤维帘式膜组件
- 自动抹灰机毕业论文初稿
- 胃早癌的简述课件
- 无尘车间穿戴规范
- 安全隐患排查自查表
- 大课间评分细则(共2页)
评论
0/150
提交评论