




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷长治市实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )A. B.C. D. 【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力2 已知数列an是等比数列前n项和是Sn,若a2=2,a3=4,则S5等于( )A8B8C11D113 有下列四个命题:“若a2+b2=0,则a,b全为0”的逆否命题;“全等三角形的面积相等”的否命题;“若“q1”,则x2+2x+q=0有实根”的逆否命题;“矩形的对角线相等”的逆命题其中真命题为( )ABCD4 如图,ABC所在平面上的点Pn(nN*)均满足PnAB与PnAC的面积比为3;1, =(2xn+1)(其中,xn是首项为1的正项数列),则x5等于( )A65B63C33D315 已知某运动物体的位移随时间变化的函数关系为,设物体第n秒内的位移为an,则数列an是( )A公差为a的等差数列B公差为a的等差数列C公比为a的等比数列D公比为的等比数列6 已知PD矩形ABCD所在的平面,图中相互垂直的平面有( )A2对B3对C4对D5对7 设函数f(x)是奇函数f(x)(xR)的导函数,f(2)=0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是( )A(,2)(0,2)B(,2)(2,+)C(2,0)(2,+)D(2,0)(0,2)8 直线2x+y+7=0的倾斜角为()A锐角B直角C钝角D不存在9 用反证法证明命题“a,bN,如果ab可被5整除,那么a,b至少有1个能被5整除”则假设的内容是( )Aa,b都能被5整除Ba,b都不能被5整除Ca,b不能被5整除Da,b有1个不能被5整除10在平行四边形ABCD中,AC为一条对角线, =(2,4),=(1,3),则等于( )A(2,4)B(3,5)C(3,5)D(2,4)11如图,一个底面半径为R的圆柱被与其底面所成角是30的平面所截,截面是一个椭圆,则该椭圆的离心率是( )ABCD12如图,在正六边形ABCDEF中,点O为其中心,则下列判断错误的是( )A =BCD二、填空题13已知直线l:axby1=0(a0,b0)过点(1,1),则ab的最大值是14设f(x)是(x2+)6展开式的中间项,若f(x)mx在区间,上恒成立,则实数m的取值范围是15已知角终边上一点为P(1,2),则值等于16在ABC中,a,b,c分别是角A,B,C的对边,若6a=4b=3c,则cosB=17球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,ABC是边长为2的正三角形,平面SAB平面ABC,则棱锥SABC的体积的最大值为18如果定义在R上的函数f(x),对任意x1x2都有x1f(x1)+x2f(x2)x1f(x2)+x2(fx1),则称函数为“H函数”,给出下列函数f(x)=3x+1 f(x)=()x+1f(x)=x2+1 f(x)=其中是“H函数”的有(填序号)三、解答题19如图,在四边形ABCD中,DAB=90,ADC=135,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积20如图,在五面体ABCDEF中,四边形ABCD是边长为4的正方形,EFAD,平面ADEF平面ABCD,且BC=2EF,AE=AF,点G是EF的中点()证明:AG平面ABCD;()若直线BF与平面ACE所成角的正弦值为,求AG的长21如图,在四边形中, 四边形绕着直线旋转一周.(1)求所成的封闭几何体的表面积;(2)求所成的封闭几何体的体积.22已知函数f(x)=x|xm|,xR且f(4)=0(1)求实数m的值(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间(3)若方程f(x)=k有三个实数解,求实数k的取值范围 23已知函数f(x)的定义域为x|xk,kZ,且对定义域内的任意x,y都有f(xy)=成立,且f(1)=1,当0x2时,f(x)0(1)证明:函数f(x)是奇函数;(2)试求f(2),f(3)的值,并求出函数f(x)在2,3上的最值24数列an满足a1=,an(,),且tanan+1cosan=1(nN*)()证明数列tan2an是等差数列,并求数列tan2an的前n项和;()求正整数m,使得11sina1sina2sinam=1 长治市实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B 2 【答案】D【解析】解:设an是等比数列的公比为q,因为a2=2,a3=4,所以q=2,所以a1=1,根据S5=11故选:D【点评】本题主要考查学生运用等比数列的前n项的求和公式的能力,本题较易,属于基础题3 【答案】B【解析】解:由于“若a2+b2=0,则a,b全为0”是真命题,因此其逆否命题是真命题;“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;若x2+2x+q=0有实根,则=44q0,解得q1,因此“若“q1”,则x2+2x+q=0有实根”的逆否命题是真命题;“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题综上可得:真命题为:故选:B【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题4 【答案】 D【解析】解:由=(2xn+1),得+(2xn+1)=,设,以线段PnA、PnD作出图形如图,则,则,即xn+1=2xn+1,xn+1+1=2(xn+1),则xn+1构成以2为首项,以2为公比的等比数列,x5+1=224=32,则x5=31故选:D【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题5 【答案】A【解析】解:,an=S(n)s(n1)=anan1=a数列an是以a为公差的等差数列故选A【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用6 【答案】D【解析】解:PD矩形ABCD所在的平面且PD面PDA,PD面PDC,面PDA面ABCD,面PDC面ABCD,又四边形ABCD为矩形BCCD,CDADPD矩形ABCD所在的平面PDBC,PDCDPDAD=D,PDCD=DCD面PAD,BC面PDC,AB面PAD,CD面PDC,BC面PBC,AB面PAB,面PDC面PAD,面PBC面PCD,面PAB面PAD综上相互垂直的平面有5对故答案选D7 【答案】A【解析】解:设g(x)=,则g(x)的导数为:g(x)=,当x0时总有xf(x)f(x)0成立,即当x0时,g(x)0,当x0时,函数g(x)为减函数,又g(x)=g(x),函数g(x)为定义域上的偶函数,x0时,函数g(x)是增函数,又g(2)=0=g(2),x0时,由f(x)0,得:g(x)g(2),解得:0x2,x0时,由f(x)0,得:g(x)g(2),解得:x2,f(x)0成立的x的取值范围是:(,2)(0,2)故选:A8 【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为,则tan=2,即可判断出结论【解答】解:设直线2x+y+7=0的倾斜角为,则tan=2,则为钝角故选:C9 【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证命题“a,bN,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”故应选B【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧10【答案】C【解析】解:,=(3,5)故选:C【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力11【答案】A【解析】解:因为底面半径为R的圆柱被与底面成30的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为: =,a2=b2+c2,c=,椭圆的离心率为:e=故选:A【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力12【答案】D【解析】解:由图可知,但不共线,故,故选D【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题二、填空题13【答案】 【解析】解:直线l:axby1=0(a0,b0)过点(1,1),a+b1=0,即a+b=1,ab=当且仅当a=b=时取等号,故ab的最大值是故答案为:【点评】本题考查基本不等式求最值,属基础题14【答案】5,+)【解析】二项式定理【专题】概率与统计;二项式定理【分析】由题意可得 f(x)=x3,再由条件可得mx2 在区间,上恒成立,求得x2在区间,上的最大值,可得m的范围【解答】解:由题意可得 f(x)=x6=x3由f(x)mx在区间,上恒成立,可得mx2 在区间,上恒成立,由于x2在区间,上的最大值为 5,故m5,即m的范围为5,+),故答案为:5,+)【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题15【答案】 【解析】解:角终边上一点为P(1,2),所以tan=2=故答案为:【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力16【答案】 【解析】解:在ABC中,6a=4b=3cb=,c=2a,由余弦定理可得cosB=故答案为:【点评】本题考查余弦定理在解三角形中的应用,用a表示b,c是解决问题的关键,属于基础题17【答案】 【解析】解:由题意画出几何体的图形如图由于面SAB面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥SABC的体积最大ABC是边长为2的正三角形,所以球的半径r=OC=CH=在RTSHO中,OH=OC=OSHSO=30,求得SH=OScos30=1,体积V=Sh=221=故答案是【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键考查空间想象能力、计算能力18【答案】 【解析】解:对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)x1f(x2)+x2f(x1)恒成立,不等式等价为(x1x2)f(x1)f(x2)0恒成立,即函数f(x)是定义在R上的不减函数(即无递减区间);f(x)在R递增,符合题意;f(x)在R递减,不合题意;f(x)在(,0)递减,在(0,+)递增,不合题意;f(x)在R递增,符合题意;故答案为:三、解答题19【答案】 【解析】解:四边形ABCD绕AD旋转一周所成的几何体,如右图:S表面=S圆台下底面+S圆台侧面+S圆锥侧面=r22+(r1+r2)l2+r1l1=20【答案】 【解析】(本小题满分12分)()证明:因为AE=AF,点G是EF的中点,所以AGEF又因为EFAD,所以AGAD因为平面ADEF平面ABCD,平面ADEF平面ABCD=AD,AG平面ADEF,所以AG平面ABCD()解:因为AG平面ABCD,ABAD,所以AG、AD、AB两两垂直以A为原点,以AB,AD,AG分别为x轴、y轴和z轴,如图建立空间直角坐标系则A(0,0,0),B(4,0,0),C(4,4,0),设AG=t(t0),则E(0,1,t),F(0,1,t),所以=(4,1,t),=(4,4,0),=(0,1,t)设平面ACE的法向量为=(x,y,z),由=0, =0,得,令z=1,得=(t,t,1)因为BF与平面ACE所成角的正弦值为,所以|cos|=,即=,解得t2=1或所以AG=1或AG=【点评】本题考查线面垂直的证明,考查满足条件的线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用21【答案】(1);(2)【解析】考点:旋转体的概念;旋转体的表面积、体积.22【答案】 【解析】解:(1)f(4)=0,4|4m|=0m=4,(2)f(x)=x|x4|=图象如图所示:由图象可知,函数在(,2),(4,+)上单调递增,在(2,4)上单调递减(3)方程f(x)=k的解的个数等价于函数y=f(x)与函数y=k的图象交点的个数,由图可知k(0,4) 23【答案】 【解析】(1)证明:函数f(x)的定义域为x|xk,kZ,关于原点对称又f(xy)=,所以f(x)=f(1x)1= = = = = =,故函数f(x)奇函数(2)令x=1,y=1,则f(2)=f1(1)= =,令x=1,y=2,则f(3)=f1(2)= = =,f(x2)=,f(x4)=,则函数的周期是4先证明f(x)在2,3上单调递减,先证明当2x3时,f(x)0,设2x3,则0x21,则f(x2)=,即f(x)=0,设2x1x23,则f(x1)0,f(x2)0,f(x2x1)0,则f(x1)f(x2)=,f(x1)f(x2),即函数f(x)在2,3上为减函数,则函数f(x)在2,3上的最大值为f(2)=0,最小值为f(3)=1【点评】本题主要考查了函数奇偶性的判断,以及函数的最值及其几何意义等有关知识,综合性较强,难度较大24【答案】 【解析】()证明:对任意正整数n,an(,),且tanan+1cosan=1(n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新冠流感基础知识培训课件
- 净水机知识培训课件
- 净化灯具知识培训班总结课件
- 养老院员工奖惩管理制度范本
- 电力企业生产调度管理手册
- 助理医师课件网
- 山东滨州2024年中考英语真题解析
- 企业员工辞职报告范本及撰写要点
- 冷门牙科知识培训总结
- 建筑装修工程安全文明施工管理措施
- 双方签定协议书
- 大疆:2025大疆机场3操作指导书
- 2024-2025学年八年级数学下册期末培优卷(北师大版)含答案
- 2025福建福州市鼓楼区国有资产投资发展集团有限公司副总经理公开招聘1人笔试参考题库附带答案详解(10套)
- 2025年12345热线考试题库
- 多余物控制管理办法
- 2025年卫生健康行业经济管理领军人才试题
- 河南省洛阳市2024-2025学年高一下学期期末质量检测物理试卷
- 雅思介绍课件
- 《电商直播运营》教案-任务1 直播平台与岗位认知
- 反邪教宣讲课件
评论
0/150
提交评论