




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
合水县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 函数在一个周期内的图象如图所示,此函数的解析式为( )A B C D2 把函数y=cos(2x+)(|)的图象向左平移个单位,得到函数y=f(x)的图象关于直线x=对称,则的值为( )ABCD3 将函数f(x)=3sin(2x+)()的图象向右平移(0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则的值不可能是( )ABCD4 如图,AB是半圆O的直径,AB2,点P从A点沿半圆弧运动至B点,设AOPx,将动点P到A,B两点的距离之和表示为x的函数f(x),则yf(x)的图象大致为( )5 已知命题p:存在x00,使21,则p是( )A对任意x0,都有2x1B对任意x0,都有2x1C存在x00,使21D存在x00,使216 方程(x24)2+(y24)2=0表示的图形是( )A两个点B四个点C两条直线D四条直线7 两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( )A2:1B5:2C1:4D3:18 四棱锥PABCD的底面是一个正方形,PA平面ABCD,PA=AB=2,E是棱PA的中点,则异面直线BE与AC所成角的余弦值是( )ABCD9 已知函数f(x)=x3+(1b)x2a(b3)x+b2的图象过原点,且在原点处的切线斜率是3,则不等式组所确定的平面区域在x2+y2=4内的面积为( )ABCD210设函数f(x)=,f(2)+f(log210)=( )A11B8C5D211直线的倾斜角是( )ABCD12函数f(x)=x的图象关于( )Ay轴对称B直线y=x对称C坐标原点对称D直线y=x对称二、填空题13双曲线x2my2=1(m0)的实轴长是虚轴长的2倍,则m的值为14【泰州中学2018届高三10月月考】设函数是奇函数的导函数,当时,则使得成立的的取值范围是_15函数f(x)=的定义域是16已知是数列的前项和,若不等式对一切恒成立,则的取值范围是_【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力17若函数为奇函数,则_【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力18设,则的最小值为 。三、解答题19(本小题满分12分)已知等差数列的前项和为,且,(1)求的通项公式和前项和;(2)设是等比数列,且,求数列的前n项和【命题意图】本题考查等差数列与等比数列的通项与前项和、数列求和等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用20已知函数f(x)=log2(x3),(1)求f(51)f(6)的值;(2)若f(x)0,求x的取值范围21已知椭圆E: =1(ab0)的焦距为2,且该椭圆经过点()求椭圆E的方程;()经过点P(2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值22巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+clnx(abc0)()证明:当a0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;()在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f(x0),则称其为“K函数”判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+clnx是否为“K函数”?并证明你的结论 23设数列an的前n项和为Sn,a1=1,Sn=nann(n1)(1)求证:数列an为等差数列,并分别求出an的表达式;(2)设数列的前n项和为Pn,求证:Pn;(3)设Cn=,Tn=C1+C2+Cn,试比较Tn与的大小 24求下列各式的值(不使用计算器):(1);(2)lg2+lg5log21+log39合水县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】考点:三角函数的图象与性质2 【答案】B【解析】解:把函数y=cos(2x+)(|)的图象向左平移个单位,得到函数y=f(x)=cos2(x+)+=cos(2x+)的图象关于直线x=对称,则2+=k,求得=k,kZ,故=,故选:B3 【答案】C【解析】函数f(x)=sin(2x+)()向右平移个单位,得到g(x)=sin(2x+2),因为两个函数都经过P(0,),所以sin=,又因为,所以=,所以g(x)=sin(2x+2),sin(2)=,所以2=2k+,kZ,此时=k,kZ,或2=2k+,kZ,此时=k,kZ,故选:C【点评】本题考查的知识点是函数y=Asin(x+)的图象变换,三角函数求值,难度中档4 【答案】【解析】选B.取AP的中点M,则PA2AM2OAsinAOM2sin ,PB2OM2OAcosAOM2cos,yf(x)PAPB2sin2cos2sin(),x0,根据解析式可知,只有B选项符合要求,故选B.5 【答案】A【解析】解:命题p:存在x00,使21为特称命题,p为全称命题,即对任意x0,都有2x1故选:A6 【答案】B【解析】解:方程(x24)2+(y24)2=0则x24=0并且y24=0,即,解得:,得到4个点故选:B【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力7 【答案】D【解析】解:设球的半径为R,圆锥底面的半径为r,则r2=4R2=,r=球心到圆锥底面的距离为=圆锥的高分别为和两个圆锥的体积比为: =1:3故选:D8 【答案】B【解析】解:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则B(2,0,0),E(0,0,1),A(0,0,0),C(2,2,0),=(2,0,1),=(2,2,0),设异面直线BE与AC所成角为,则cos=故选:B9 【答案】 B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2则f(x)=x3x2+ax,函数的导数f(x)=x22x+a,因为原点处的切线斜率是3,即f(0)=3,所以f(0)=a=3,故a=3,b=2,所以不等式组为则不等式组确定的平面区域在圆x2+y2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求kOB=,kOA=,tanBOA=1,BOA=,扇形的圆心角为,扇形的面积是圆的面积的八分之一,圆x2+y2=4在区域D内的面积为4=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键10【答案】B【解析】解:f(x)=,f(2)=1+log24=1+2=3,=5,f(2)+f(log210)=3+5=8故选:B【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用11【答案】A【解析】解:设倾斜角为,直线的斜率为,tan=,0180,=30故选A【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握12【答案】C【解析】解:f(x)=+x=f(x)是奇函数,所以f(x)的图象关于原点对称故选C二、填空题13【答案】4 【解析】解:双曲线x2my2=1化为x2=1,a2=1,b2=,实轴长是虚轴长的2倍,2a=22b,化为a2=4b2,即1=,解得m=4故答案为:4【点评】熟练掌握双曲线的标准方程及实轴、虚轴的定义是解题的关键14【答案】【解析】15【答案】x|x2且x3 【解析】解:根据对数函数及分式有意义的条件可得解可得,x2且x3故答案为:x|x2且x316【答案】【解析】由,两式相减,得,所以,于是由不等式对一切恒成立,得,解得17【答案】2016【解析】因为函数为奇函数且,则由,得,整理,得18【答案】9【解析】由柯西不等式可知三、解答题19【答案】【解析】(1)设等差数列的首项为,公差为,则由,得,解得,3分所以,即,即5分20【答案】 【解析】解:(1)函数f(x)=log2(x3),f(51)f(6)=log248log23=log216=4;(2)若f(x)0,则0x31,解得:x(3,4【点评】本题考查的知识点是对数函数的图象和性质,对数的运算性质,解答时要时时注意真数大于0,以免出错21【答案】 【解析】解:()由题意得,2c=2, =1;解得,a2=4,b2=1;故椭圆E的方程为+y2=1;()由题意知,当k1=0时,M点的纵坐标为0,直线MN与y轴垂直,则点N的纵坐标为0,故k2=k1=0,这与k2k1矛盾当k10时,直线PM:y=k1(x+2);由得,(+4)y2=0;解得,yM=;M(,),同理N(,),由直线MN与y轴垂直,则=;(k2k1)(4k2k11)=0,k2k1=【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题22【答案】 【解析】解:()证明:如果g(x)是定义域(0,+)上的增函数,则有g(x)=2ax+b+=0;从而有2ax2+bx+c0对任意x(0,+)恒成立;又a0,则结合二次函数的图象可得,2ax2+bx+c0对任意x(0,+)恒成立不可能,故当a0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;()函数f(x)=ax2+bx+c是“K函数”,g(x)=ax2+bx+clnx不是“K函数”,事实上,对于二次函数f(x)=ax2+bx+c,k=a(x1+x2)+b=2ax0+b;又f(x0)=2ax0+b,故k=f(x0);故函数f(x)=ax2+bx+c是“K函数”;对于函数g(x)=ax2+bx+clnx,不妨设0x1x2,则k=2ax0+b+;而g(x0)=2ax0+b+;故=,化简可得,=;设t=,则0t1,lnt=;设s(t)=lnt;则s(t)=0;则s(t)=lnt是(0,1)上的增函数,故s(t)s(1)=0;则lnt;故g(x)=ax2+bx+clnx不是“K函数”【点评】本题考查了导数的综合应用及学生对新定义的接受能力,属于中档题23【答案】 【解析】解:(1)证明:Sn=nann(n1)Sn+1=(n+1)an+1(n+1)nan+1=Sn+1Sn=(n+1)an+1nan2nna
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年港口船舶引航活动行业研究报告及未来行业发展趋势预测
- 2025年镀镍回形针行业研究报告及未来行业发展趋势预测
- 2025年电量变送器校验仪行业研究报告及未来行业发展趋势预测
- 2025年虫草菌粉行业研究报告及未来行业发展趋势预测
- 2025年电子病历软件行业研究报告及未来行业发展趋势预测
- 2025年半滑舌鳎养殖行业研究报告及未来行业发展趋势预测
- 玻璃厂安全标语检查内容管理办法
- 陶瓷厂废品处置流程管理办法
- 橡胶厂开炼机清洁规章
- 招聘师内部技能考核试卷及答案
- 2025年江苏省农垦集团有限公司招聘笔试备考及答案详解(新)
- 生物安全培训试题(答案)
- 陪玩团基本知识培训课件
- 2025年公证处聘用制书记员招聘考试要点及面试模拟题解析
- 2025江西吉安庐陵新区招聘社区工作者(专职网格员)招聘22人考试参考试题及答案解析
- 芯片研发流程管理办法
- 2025-2026学年广美版(2024)小学美术二年级上册教学计划及进度表
- 电子工程师知识培训课件
- 2025年手电筒行业研究报告及未来行业发展趋势预测
- 设备使用与保养培训课件
- 兵团连队职工考试试题及答案解析
评论
0/150
提交评论