南山区一中2018-2019学年上学期高二数学12月月考试题含解析_第1页
南山区一中2018-2019学年上学期高二数学12月月考试题含解析_第2页
南山区一中2018-2019学年上学期高二数学12月月考试题含解析_第3页
南山区一中2018-2019学年上学期高二数学12月月考试题含解析_第4页
南山区一中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

南山区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知命题p:xR,2x3x;命题q:xR,x3=1x2,则下列命题中为真命题的是( )ApqBpqCpqDpq2 若满足约束条件,则当取最大值时,的值为( )A B C D3 定义在上的偶函数满足,对且,都有,则有( )A BC. D4 用反证法证明命题“a,bN,如果ab可被5整除,那么a,b至少有1个能被5整除”则假设的内容是( )Aa,b都能被5整除Ba,b都不能被5整除Ca,b不能被5整除Da,b有1个不能被5整除5 如图,在平面直角坐标系中,锐角、及角+的终边分别与单位圆O交于A,B,C三点分别作AA、BB、CC垂直于x轴,若以|AA|、|BB|、|CC|为三边长构造三角形,则此三角形的外接圆面积为( )ABCD6 函数是指数函数,则的值是( )A4 B1或3 C3 D17 方程x= 所表示的曲线是( )A双曲线B椭圆C双曲线的一部分D椭圆的一部分8 甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:分组70,8080,9090,100100,110频数34815分组110,120120,130130,140140,150频数15x32乙校:分组70,8080,9090,100100,110频数1289分组110,120120,130130,140140,150频数1010y3则x,y的值分别为 A、12,7 B、 10,7 C、 10,8 D、 11,99 若是定义在上的偶函数,有,则( )A BC D10过点(1,3)且平行于直线x2y+3=0的直线方程为( )Ax2y+7=0B2x+y1=0Cx2y5=0D2x+y5=011双曲线的左右焦点分别为,过的直线与双曲线的右支交于两点,若是以为直角顶点的等腰直角三角形,则( )A B C D12利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定断言“X和Y有关系”的可信度,如果k5.024,那么就有把握认为“X和Y有关系”的百分比为( )P(K2k)0.500.4000.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828A25%B75%C2.5%D97.5%二、填空题13向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为14圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线xy+1=0相交所得的弦长为,则圆的方程为15设直线系M:xcos+(y2)sin=1(02),对于下列四个命题:AM中所有直线均经过一个定点B存在定点P不在M中的任一条直线上C对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上DM中的直线所能围成的正三角形面积都相等其中真命题的代号是(写出所有真命题的代号)16如图,在矩形中, , 在上,若, 则的长=_17对于|q|1(q为公比)的无穷等比数列an(即项数是无穷项),我们定义Sn(其中Sn是数列an的前n项的和)为它的各项的和,记为S,即S=Sn=,则循环小数0. 的分数形式是18给出下列命题:存在实数,使函数是偶函数是函数的一条对称轴方程若、是第一象限的角,且,则sinsin其中正确命题的序号是三、解答题19已知函数f(x)=|xm|,关于x的不等式f(x)3的解集为1,5(1)求实数m的值;(2)已知a,b,cR,且a2b+2c=m,求a2+b2+c2的最小值 20在20142015赛季CBA常规赛中,某篮球运动员在最近5场比赛中的投篮次数及投中次数如下表所示:2分球3分球第1场10投5中4投2中第2场13投5中5投2中第3场8投4中3投1中第4场9投5中3投0中第5场10投6中6投2中(1)分别求该运动员在这5场比赛中2分球的平均命中率和3分球的平均命中率;(2)视这5场比赛中2分球和3分球的平均命中率为相应的概率假设运动员在第6场比赛前一分钟分别获得1次2分球和1次3分球的投篮机会,该运动员在最后一分钟内得分分布列和数学期望21已知函数f(x)=lnxaxb(a,bR)()若函数f(x)在x=1处取得极值1,求a,b的值()讨论函数f(x)在区间(1,+)上的单调性()对于函数f(x)图象上任意两点A(x1,y1),B(x2,y2)(x1x2),不等式f(x0)k恒成立,其中k为直线AB的斜率,x0=x1+(1)x2,01,求的取值范围 22已知函数(1)令,讨论的单调区间;(2)若,正实数满足,证明23已知函数f(x)=ex(x2+ax)在点(0,f(0)处的切线斜率为2()求实数a的值;()设g(x)=x(xt)(tR),若g(x)f(x)对x0,1恒成立,求t的取值范围;()已知数列an满足a1=1,an+1=(1+)an,求证:当n2,nN时 f()+f()+L+f()n()(e为自然对数的底数,e2.71828) 24如图,已知椭圆C,点B坐标为(0,1),过点B的直线与椭圆C的另外一个交点为A,且线段AB的中点E在直线y=x上(1)求直线AB的方程;(2)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,直线BM交椭圆C于另外一点Q证明:OMON为定值;证明:A、Q、N三点共线 南山区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:因为x=1时,2131,所以命题p:xR,2x3x为假命题,则p为真命题令f(x)=x3+x21,因为f(0)=10,f(1)=10所以函数f(x)=x3+x21在(0,1)上存在零点,即命题q:xR,x3=1x2为真命题则pq为真命题故选B2 【答案】D【解析】考点:简单线性规划3 【答案】A 【解析】考点:1、函数的周期性;2、奇偶性与单调性的综合.11114 【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证命题“a,bN,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”故应选B【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧5 【答案】 A【解析】(本题满分为12分)解:由题意可得:|AA|=sin、|BB|=sin、|CC|=sin(+),设边长为sin(+)的所对的三角形内角为,则由余弦定理可得,cos=coscos=coscos=sinsincoscos=cos(+),(0,)+(0,)sin=sin(+)设外接圆的半径为R,则由正弦定理可得2R=1,R=,外接圆的面积S=R2=故选:A【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题6 【答案】C【解析】考点:指数函数的概念7 【答案】C【解析】解:x=两边平方,可变为3y2x2=1(x0),表示的曲线为双曲线的一部分;故选C【点评】本题主要考查了曲线与方程解题的过程中注意x的范围,注意数形结合的思想8 【答案】B【解析】1从甲校抽取11060人,从乙校抽取11050人,故x10,y7.9 【答案】D10【答案】A【解析】解:由题意可设所求的直线方程为x2y+c=0过点(1,3)代入可得16+c=0 则c=7x2y+7=0故选A【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x2y+c=011【答案】C【解析】试题分析:设,则,因为,所以,解得,所以,在直角三角形中,由勾股定理得,因为,所以,所以.考点:直线与圆锥曲线位置关系【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方.111.Com12【答案】D【解析】解:k5、024,而在观测值表中对应于5.024的是0.025,有10.025=97.5%的把握认为“X和Y有关系”,故选D【点评】本题考查独立性检验的应用,是一个基础题,这种题目出现的机会比较小,但是一旦出现,就是我们必得分的题目二、填空题13【答案】 【解析】解:不等式组的可行域为:由题意,A(1,1),区域的面积为=(x3)=,由,可得可行域的面积为:1=,坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为: =故答案为:【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积14【答案】(x1)2+(y+1)2=5 【解析】解:设所求圆的圆心为(a,b),半径为r,点A(2,1)关于直线x+y=0的对称点A仍在这个圆上,圆心(a,b)在直线x+y=0上,a+b=0,且(2a)2+(1b)2=r2;又直线xy+1=0截圆所得的弦长为,且圆心(a,b)到直线xy+1=0的距离为d=,根据垂径定理得:r2d2=,即r2()2=;由方程组成方程组,解得;所求圆的方程为(x1)2+(y+1)2=5故答案为:(x1)2+(y+1)2=515【答案】BC【解析】【分析】验证发现,直线系M:xcos+(y2)sin=1(02)表示圆x2+(y2)2=1的切线的集合,AM中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标C对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,DM中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出【解答】解:因为点(0,2)到直线系M:xcos+(y2)sin=1(02)中每条直线的距离d=1,直线系M:xcos+(y2)sin=1(02)表示圆x2+(y2)2=1的切线的集合,A由于直线系表示圆x2+(y2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上,故C正确;D如下图,M中的直线所能围成的正三角形有两类,其一是如ABB型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确故答案为:BC16【答案】【解析】在RtABC中,BC3,AB,所以BAC60.因为BEAC,AB,所以AE,在EAD中,EAD30,AD3,由余弦定理知,ED2AE2AD22AEADcosEAD923,故ED.17【答案】 【解析】解:0. = + +=,故答案为:【点评】本题考查数列的极限,考查学生的计算能力,比较基础18【答案】 【解析】解:sincos=sin2,存在实数,使错误,故错误,函数=cosx是偶函数,故正确,当时, =cos(2+)=cos=1是函数的最小值,则是函数的一条对称轴方程,故正确,当=,=,满足、是第一象限的角,且,但sin=sin,即sinsin不成立,故错误,故答案为:【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力三、解答题19【答案】 【解析】解:(1)|xm|33xm3m3xm+3,由题意得,解得m=2;(2)由(1)可得a2b+2c=2,由柯西不等式可得(a2+b2+c2)12+(2)2+22(a2b+2c)2=4,a2+b2+c2当且仅当,即a=,b=,c=时等号成立,a2+b2+c2的最小值为【点评】本题主要考查绝对值三角不等式、柯西不等式的应用,属于基础题 20【答案】 【解析】解:(1)该运动员在这5场比赛中2分球的平均命中率为:=,3分球的命中率为: =(2)依题意,该运动员投一次2分球命中的概率和投一次3分球命中的概率分别为,的可能取值为0,2,3,5,P(=0)=(1)(1)=,P(=2)=,P(=3)=(1)=,P(=5)=,该运动员在最后1分钟内得分的分布列为: 0 2 3 5 P该运动员最后1分钟内得分的数学期望为E=2【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想21【答案】 【解析】解:()f(x)的导数为f(x)=a,由题意可得f(1)=0,且f(1)=1,即为1a=0,且ab=1,解得a=1b=2,经检验符合题意故a=1,b=2;()由()可得f(x)=a,x1,01,若a0,f(x)0,f(x)在(1,+)递增;0a1,x(1,),f(x)0,x(,+),f(x)0;a1,f(x)0f(x)在(1,+)递减综上可得,a0,f(x)在(1,+)递增;0a1,f(x)在(1,)递增,在(,+)递减;a1,f(x)在(1,+)递减()f(x0)=a=a,直线AB的斜率为k=a,f(x0)k,即x2x1ln x1+(1)x2,即为1ln +(1),令t=1,t1lnt+(1)t,即t1tlnt+(tlntlnt)0恒成立,令函数g(t)=t1tlnt+(tlntlnt),t1,当0时,g(t)=lnt+(lnt+1)=,令(t)=tlnt+(tlnt+t1),t1,(t)=1lnt+(2+lnt)=(1)lnt+21,当0时,(t)0,(t)在(1,+)递减,则(t)(1)=0,故当t1时,g(t)0,则g(t)在(1,+)递减,g(t)g(1)=0符合题意;当1时,(t)=(1)lnt+210,解得1t,当t(1,),(t)0,(t)在(1,)递增,(t)(1)=0;当t(1,),g(t)0,g(t)在(1,)递增,g(t)g(1)=0,则有当t(1,),g(t)0不合题意即有0【点评】本题考查导数的运用:求单调区间和极值、最值,同时考查函数的单调性的运用,不等式恒成立思想的运用,运用分类讨论的思想方法是解题的关键 22【答案】(1)当时,函数单调递增区间为,无递减区间,当时,函数单调递增区间为,单调递减区间为;(2)证明见解析.【解析】试题解析:(2)当时,由可得,即,令,则,则在区间上单调递减,在区间上单调递增,所以,所以,又,故,由可知1考点:函数导数与不等式【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.23【答案】 【解析】解:()f(x)=ex(x2+ax),f(x)=ex(x2+ax)+ex(2x+a)=ex(x2+ax2xa);则由题意得f(0)=(a)=2,故a=2()由()知,f(x)=ex(x2+2x),由g(x)f(x)得,x(xt)ex(x2+2x),x0,1;当x=0时,该不等式成立;当x(0,1时,不等式x+t+ex(x+2)在(0,1上恒成立,即tex(x+2)+xmax设h(x)=ex(x+2)+x,x(0,1,h(x)=ex(x+1)+1,h(x)=xex0,h(x)在(0,1单调递增,h(x)h(0)=0,h(x)在(0,1单调递增,h(x)max=h(1)=1,t1()证明:an+1=(1+)an,=,又a1=1,n2时,an=a1=1=n;对n=1也成立,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论