




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3.2事件的独立性1了解两个事件相互独立的概念,会判断两个事件是否为相互独立事件(难点)2掌握相互独立事件同时发生的概率的计算公式,并能利用该公式计算相关问题的概率(重点)3了解互斥事件与相互独立事件的联系与区别,综合利用事件的互斥性与独立性求解综合问题(易错点)基础初探教材整理事件的独立性阅读教材P59P60,完成下列问题1事件的独立性的概念(1)概念:若事件A,B满足P(A|B)P(A),则称事件A,B独立(2)含义:P(A|B)P(A)说明事件B的发生不影响事件A发生的概率2相互独立事件的概率计算如果任何事件与必然事件独立,与不可能事件也独立,那么(1)两个事件A,B相互独立的充要条件是P(AB)P(A)P(B)(2)若事件A1,A2,An相互独立,那么这n个事件同时发生的概率P(A1A2An)P(A1)P(A2)P(An)3相互独立事件的性质如果事件A与B相互独立,那么A与,与B,与也相互独立1下列说法正确的有_(填序号)对事件A和B,若P(B|A)P(B),则事件A与B相互独立;若事件A,B相互独立,则P()P()P();如果事件A与事件B相互独立,则P(B|A)P(B);若事件A与B相互独立,则B与相互独立【解析】若P(B|A)P(B),则P(AB)P(A)P(B),故A,B相互独立,所以正确;若事件A,B相互独立,则,也相互独立,故正确;若事件A,B相互独立,则A发生与否不影响B的发生,故正确;B与相互对立,不是相互独立,故错误【答案】2甲、乙两人投球命中率分别为,则甲、乙两人各投一次,恰好命中一次的概率为_. 【导学号:29440046】【解析】事件“甲投球一次命中”记为A,“乙投球一次命中”记为B,“甲、乙两人各投一次恰好命中一次”记为事件C,则CAB且A与B互斥,P(C)P(AB)P(A)P()P()P(B).【答案】3甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8,0.6,0.5,则三人都达标的概率是_,三人中至少有一人达标的概率是_【解析】三人都达标的概率为0.80.60.50.24.三人都不达标的概率为(10.8)(10.6)(10.5)0.20.40.50.04.三人中至少有一人达标的概率为10.040.96.【答案】0.240.96质疑手记预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑: 小组合作型相互独立事件的判断判断下列各对事件是否是相互独立事件(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”【精彩点拨】(1)利用独立性概念的直观解释进行判断(2)计算“从8个球中任取一球是白球”发生与否,事件“从剩下的7个球中任意取出一球还是白球”的概率是否相同进行判断(3)利用事件的独立性定义式判断【自主解答】(1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件(2)“从8个球中任意取出1个,取出的是白球”的概率为,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为;若前一事件没有发生,则后一事件发生的概率为,可见,前一事件是否发生,对后一事件发生的概率有影响,所以二者不是相互独立事件(3)记A:出现偶数点,B:出现3点或6点,则A2,4,6,B3,6,AB6,P(A),P(B),P(AB).P(AB)P(A)P(B),事件A与B相互独立判断事件是否相互独立的方法1定义法:事件A,B相互独立P(AB)P(A)P(B)2由事件本身的性质直接判定两个事件发生是否相互影响3条件概率法:当P(A)0时,可用P(B|A)P(B)判断再练一题1同时掷两颗质地均匀的骰子,令A第一颗骰子出现奇数点,令B第二颗骰子出现偶数点,判断事件A与B是否相互独立【解】A第一颗骰子出现1,3,5点,B第二颗骰子出现2,4,6点P(A),P(B),P(AB),P(AB)P(A)P(B),事件A,B相互独立相互独立事件发生的概率面对非洲埃博拉病毒,各国医疗科研机构都在研究疫苗,现有A,B,C三个独立的研究机构在一定的时期内能研制出疫苗的概率分别是,.求:(1)他们都研制出疫苗的概率;(2)他们都失败的概率;(3)他们能够研制出疫苗的概率【精彩点拨】【自主解答】令事件A,B,C分别表示A,B,C三个独立的研究机构在一定时期内成功研制出该疫苗,依题意可知,事件A,B,C相互独立,且P(A),P(B),P(C).(1)他们都研制出疫苗,即事件ABC同时发生,故P(ABC)P(A)P(B)P(C).(2)他们都失败即事件 同时发生故P( )P()P()P()(1P(A)(1P(B)(1P(C).(3)“他们能研制出疫苗”的对立事件为“他们都失败”,结合对立事件间的概率关系可得所求事件的概率P1P( )1.1求相互独立事件同时发生的概率的步骤(1)首先确定各事件之间是相互独立的;(2)确定这些事件可以同时发生;(3)求出每个事件的概率,再求积2使用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事件是相互独立的,而且它们能同时发生再练一题2一个袋子中有3个白球,2个红球,每次从中任取2个球,取出后再放回,求:(1)第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率;(2)第1次取出的2个球1个是白球、1个是红球,第2次取出的2个球都是白球的概率【解】记“第1次取出的2个球都是白球”的事件为A,“第2次取出的2个球都是红球”的事件为B,“第1次取出的2个球中1个是白球、1个是红球”的事件为C,很明显,由于每次取出后再放回,A,B,C都是相互独立事件(1)P(AB)P(A)P(B).故第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率是.(2)P(CA)P(C)P(A).故第1次取出的2个球中1个是白球、1个是红球,第2次取出的2个球都是白球的概率是.探究共研型事件的相互独立性与互斥性探究1甲、乙二人各进行一次射击比赛,记A“甲击中目标”,B“乙击中目标”,试问事件A与B是相互独立事件,还是互斥事件?事件B与A呢?【提示】事件A与B,与B,A与均是相互独立事件,而B与A是互斥事件探究2在探究1中,若甲、乙二人击中目标的概率均是0.6,如何求甲、乙二人恰有一人击中目标的概率?【提示】“甲、乙二人恰有1人击中目标”记为事件C,则CBA.所以P(C)P(BA)P(B)P(A)P()P(B)P(A)P()(10.6)0.60.6(10.6)0.48.探究3由探究1、2,你能归纳出相互独立事件与互斥事件的区别吗?【提示】相互独立事件与互斥事件的区别相互独立事件互斥事件条件事件A(或B)是否发生对事件B(或A)发生的概率没有影响不可能同时发生的两个事件符号相互独立事件A,B同时发生,记作:AB互斥事件A,B中有一个发生,记作:AB(或AB)计算公式P(AB)P(A)P(B)P(AB)P(A)P(B)红队队员甲、乙、丙与蓝队队员A,B,C进行围棋比赛,甲对A、乙对B、丙对C各一盘已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立求:(1)红队中有且只有一名队员获胜的概率;(2)求红队至少两名队员获胜的概率【精彩点拨】弄清事件“红队有且只有一名队员获胜”与事件“红队至少两名队员获胜”是由哪些基本事件组成的,及这些事件间的关系,然后选择相应概率公式求值【自主解答】设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F,则,分别表示甲不胜A、乙不胜B、丙不胜C的事件因为P(D)0.6,P(E)0.5,P(F)0.5,由对立事件的概率公式知P()0.4,P()0.5,P()0.5.(1)红队有且只有一名队员获胜的事件有D ,E ,F,以上3个事件彼此互斥且独立所以红队有且只有一名队员获胜的概率为P1P(D E F)P(D)P(E )P(F)0.60.50.50.40.50.50.40.50.50.35.(2)法一:红队至少两人获胜的事件有:DE ,DF,EF,DEF.由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为PP(DE )P(D F)P(EF)P(DEF)0.60.50.50.60.50.50.40.50.50.60.50.50.55.法二:“红队至少两人获胜”与“红队最多一人获胜”为对立事件,而红队都不获胜为事件 ,且P( )0.40.50.50.1.红队至少两人获胜的概率为P21P1P( )10.350.10.55.1本题(2)中用到直接法和间接法当遇到“至少”“至多”问题可以考虑间接法2求复杂事件的概率一般可分三步进行:(1)列出题中涉及的各个事件,并用适当的符号表示它们;(2)理清各事件之间的关系,恰当地用事件间的“并”“交”表示所求事件;(3)根据事件之间的关系准确地运用概率公式进行计算再练一题3(2016连云港高二检测)某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13 s内(称为合格)的概率分别为,若对这三名短跑运动员的100米跑的成绩进行一次检测,则求:(1)三人都合格的概率;(2)三人都不合格的概率;(3)出现几人合格的概率最大【解】记甲、乙、丙三人100米跑成绩合格分别为事件A,B,C,显然事件A,B,C相互独立,则P(A),P(B),P(C).设恰有k人合格的概率为Pk(k0,1,2,3)(1)三人都合格的概率:P3(ABC)P(A)P(B)P(C).(2)三人都不合格的概率:P0( )P()P()P().(3)恰有两人合格的概率:P2P(AB)P(AC)P(BC).恰有一人合格的概率:P11P0P2P31.综合(1)(2)可知P1最大所以出现恰有一人合格的概率最大构建体系1若A与B是相互独立事件,则下面不是相互独立事件的是_A与;A与;B与;与.【解析】A与是互斥事件,不可能是相互独立事件【答案】2已知A,B是相互独立事件,且P(A),P(B),则P(AB)_,P(B)_.【解析】A,B是相互独立事件,与B也是相互独立事件P(AB)P(A)P(B),P(B)P()P(B)(1P(A)P(B).【答案】3明天上午李明要参加“青年文明号”活动,为了准时起床,他用甲乙两个闹钟叫醒自己,假设甲闹钟准时响的概率为0.80,乙闹钟准时响的概率为0.90,则两个闹钟至少有一个准时响的概率是_【解析】设两个闹钟至少有一个准时响的事件为A,则P(A)1(10.80)(10.90)10.200.100.98.【答案】0.984加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为,且各道工序互不影响,则加工出来的零件的次品率为_.【导学号:29440047】【解析】加工出来的零件的正品率是,因此加工出来的零件的次品率为1.【答案】5某班甲、乙、丙三名同学竞选班委,甲当选的概率为,乙当选的概率为,丙当选的概率为.(1)求恰有一名同学当选的概率;(2)求至多有两人当选的概率【解】设甲、乙、丙当选的事件分别为A,B,C,则有P(A),P(B),P(C).(1)因为事件A,B,C相互独立,所以恰有一名同学当选的概率为P(A)P(B)P(C)P(A)P()P()P()P(B)P()P()P()P(C).(2)至多有两人当选的概率为1P(ABC)1P(A)P(B)P(C)1.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)学业达标一、填空题1从应届高中生中选拔飞行员,已知这批学生体型合格的概率为,视力合格的概率为,其他几项标准合格的概率为,从中任选一名学生,则该生三项均合格的概率为(假设三项标准互不影响)_【解析】该生三项均合格的概率为.【答案】2种植两株不同的花卉,若它们的成活率分别为p和q,则恰有一株成活的概率为_. 【导学号:29440048】【解析】由于两株花卉成活与否互不影响,故恰有一株成活的概率为p(1q)q(1p)pq2pq.【答案】pq2pq3如图232所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是_图232【解析】左边圆盘指针落在奇数区域的概率为,右边圆盘指针落在奇数区域的概率为,所以两个指针同时落在奇数区域的概率为.【答案】4在某道路A,B,C三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这个道路上匀速行驶,则三处都不停车的概率为_【解析】由题意可知,每个交通灯开放绿灯的概率分别为,.在这个道路上匀速行驶,则三处都不停车的概率为.【答案】5从某地区的儿童中预选体操学员,已知这些儿童体型合格的概率为,身体关节构造合格的概率为,从中任挑一儿童,这两项至少有一项合格的概率是_(假定体型与身体结构合格与否相互之间没有影响)【解析】这两项都不合格的概率是,所以至少有一项合格的概率是1.【答案】6如图233,用K,A1,A2三类不同的元件连接成一个系统当K正常工作且A1,A2至少有一个正常工作时,系统正常工作已知K,A1,A2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为_图233【解析】可知K,A1,A2三类元件是否正常工作相互独立,所以A1,A2至少有一个正常工作的概率为1(10.8)20.96,所以系统正常工作的概率为0.90.960.864.【答案】0.8647(2016济南高二检测)甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,从每袋中任取一球,则取到相同颜色的球的概率是_【解析】从甲袋中任取一球是白球的概率为,是红球的概率为;从乙袋中任取一球是白球的概率为,是红球的概率为,故所求事件的概率为.【答案】8台风在危害人类的同时,也在保护人类台风给人类送来了淡水资源,大大缓解了全球水荒,另外还使世界各地冷热保持相对均衡甲、乙、丙三颗卫星同时监测台风,在同一时刻,甲、乙、丙三颗卫星准确预报台风的概率分别为0.8,0.7,0.9,各卫星间相互独立,则在同一时刻至少有两颗预报准确的是_【解析】设甲、乙、丙预报准确依次记为事件A,B,C,不准确记为,则P(A)0.8,P(B)0.7,P(C)0.9,P()0.2,P()0.3,P()0.1,至少两颗预报准确的事件有AB,AC,BC,ABC,这四个事件两两互斥且独立至少两颗预报准确的概率为PP(AB)P(AC)P(BC)P(ABC)0.80.70.10.80.30.90.20.70.90.80.70.90.0560.2160.1260.5040.902.【答案】0.902二、解答题9根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险的概率为0.3.设各车主购买保险相互独立(1)求该地的1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率【解】记A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的一种;D表示事件:该地的1位车主甲、乙两种保险都不购买;E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买(1)P(A)0.5,P(B)0.3,CAB,P(C)P(AB)P(A)P(B)0.8.(2)D,P(D)1P(C)10.80.2,P(E)0.80.20.80.80.80.20.20.80.80.384.10某城市有甲、乙、丙3个旅游景点,一位游客游览这3个景点的概率分别是0.4,0.5,0.6,且游客是否游览哪个景点互不影响,用表示该游客离开该城市时游览的景点数与没有游览的景点数之差的绝对值,求的分布列【解】设游客游览甲、乙、丙景点分别记为事件A1,A2,A3,已知A1,A2,A3相互独立,且P(A1)0.4,P(A2)0.5,P(A3)0.6,游客游览的景点数可能取值为0,1,2,3,相应的游客没有游览的景点数可能取值为3,2,1,0,所以的可能取值为1,3.则P(3)P(A1A2A3)P(123)P(A1)P(A2)P(A3)P(1)P(2)P(3)20.40.50.60.24.P(1)10.240.76.所以分布列为:13P0.760.24能力提升1投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是_【解析】P(A),P(B),P(),P().又A,B为相互独立事件,P( )P()P().A,B中至少有一件发生的概率为1P( )1.【答案】2荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 稀土抛光粉工应急处置考核试卷及答案
- 金融客服考试题及答案
- 水声换能器制造工技能操作考核试卷及答案
- 民族拉弦弹拨乐器制作工质量管控考核试卷及答案
- 搅拌工职业技能考核试卷及答案
- 排水管道工技能巩固考核试卷及答案
- 矿井开掘工质量追溯知识考核试卷及答案
- 铸管制芯工入职考核试卷及答案
- 铝电解工知识考核试卷及答案
- 2025年外科创伤急救处理流程模拟考试卷答案及解析
- 学生课程免考(修)申请表(模板)
- 粘膜免疫 2课件
- 电子课件-《可编程序控制器及其应用(三菱-第三版)》-A04-1724-课题一-可编程序控制器基础知识
- 统计业务知识(统计法规)课件
- 实验计划样表
- 艾滋病个案流行病学调查表
- 广告策划与创意课件-2
- 地质勘察任务书模板
- 全国中心血站上岗证考试题库
- 环境社会学整本书课件完整版电子教案全套课件最全教学教程ppt(最新)
- 计算机组装与维护完整版课件(全)
评论
0/150
提交评论