




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷五原县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 设D为ABC所在平面内一点,则( )ABCD2 设、是两个不同的平面,l、m为两条不同的直线,命题p:若平面,l,m,则lm;命题q:l,ml,m,则,则下列命题为真命题的是( )Ap或qBp且qCp或qDp且q3 函数是( )A最小正周期为2的奇函数B最小正周期为的奇函数C最小正周期为2的偶函数D最小正周期为的偶函数4 已知椭圆,长轴在y轴上,若焦距为4,则m等于( )A4B5C7D85 设复数(是虚数单位),则复数( )A. B. C. D. 【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力6 已知函数f(x)=x22x+3在0,a上有最大值3,最小值2,则a的取值范围( )A1,+)B0.2C1,2D(,27 若函数f(x)=ax2+bx+1是定义在1a,2a上的偶函数,则该函数的最大值为( )A5B4C3D28 复数是虚数单位)的虚部为( )A B C D【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力9 在等差数列an中,a1=2,a3+a5=8,则a7=( )A3B6C7D810已知正项数列an的前n项和为Sn,且2Sn=an+,则S2015的值是( )ABC2015D11定义在上的偶函数满足,对且,都有,则有( )A BC. D12已知f(x)=4+ax1的图象恒过定点P,则点P的坐标是( )A(1,5)B(1,4)C(0,4)D(4,0)二、填空题13二项式展开式中,仅有第五项的二项式系数最大,则其常数项为14在中,角、所对应的边分别为、,若,则_15已知函数,则_;的最小值为_16如图所示,在三棱锥CABD中,E、F分别是AC和BD的中点,若CD=2AB=4,EFAB,则EF与CD所成的角是17已知点A(2,0),点B(0,3),点C在圆x2+y2=1上,当ABC的面积最小时,点C的坐标为18已知函数,是函数的一个极值点,则实数 三、解答题19已知双曲线C:与点P(1,2)(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由20(本小题满分12分)已知函数.(1)当时,讨论函数在区间上零点的个数;(2)证明:当,时,.21已知数列an是各项均为正数的等比数列,满足a3=8,a3a22a1=0()求数列an的通项公式()记bn=log2an,求数列anbn的前n项和Sn22在锐角三角形ABC中,内角A,B,C所对的边分别为a,b,c,且2csinA=a(1)求角C的大小;(2)若c=2,a2+b2=6,求ABC的面积23双曲线C与椭圆+=1有相同的焦点,直线y=x为C的一条渐近线求双曲线C的方程24已知矩阵M所对应的线性变换把点A(x,y)变成点A(13,5),试求M的逆矩阵及点A的坐标 五原县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:由已知得到如图由=;故选:A【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为2 【答案】 C【解析】解:在长方体ABCDA1B1C1D1中命题p:平面AC为平面,平面A1C1为平面,直线A1D1,和直线AB分别是直线m,l,显然满足,l,m,而m与l异面,故命题p不正确;p正确;命题q:平面AC为平面,平面A1C1为平面,直线A1D1,和直线AB分别是直线m,l,显然满足l,ml,m,而,故命题q不正确;q正确;故选C【点评】此题是个基础题考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力3 【答案】B【解析】解:因为=cos(2x+)=sin2x所以函数的周期为: =因为f(x)=sin(2x)=sin2x=f(x),所以函数是奇函数故选B【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力4 【答案】D【解析】解:将椭圆的方程转化为标准形式为,显然m210m,即m6,解得m=8故选D【点评】本题主要考查了椭圆的简单性质要求学生对椭圆中对长轴和短轴即及焦距的关系要明了5 【答案】A【解析】6 【答案】C【解析】解:f(x)=x22x+3=(x1)2+2,对称轴为x=1所以当x=1时,函数的最小值为2当x=0时,f(0)=3由f(x)=3得x22x+3=3,即x22x=0,解得x=0或x=2要使函数f(x)=x22x+3在0,a上有最大值3,最小值2,则1a2故选C【点评】本题主要考查二次函数的图象和性质,利用配方法是解决二次 函数的基本方法7 【答案】A【解析】解:函数f(x)=ax2+bx+1是定义在1a,2a上的偶函数,可得b=0,并且1+a=2a,解得a=1,所以函数为:f(x)=x2+1,x2,2,函数的最大值为:5故选:A【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力8 【答案】A【解析】,所以虚部为-1,故选A.9 【答案】B【解析】解:在等差数列an中a1=2,a3+a5=8,2a4=a3+a5=8,解得a4=4,公差d=,a7=a1+6d=2+4=6故选:B10【答案】D【解析】解:2Sn=an+,解得a1=1当n=2时,2(1+a2)=,化为=0,又a20,解得,同理可得猜想验证:2Sn=+=, =,因此满足2Sn=an+,Sn=S2015=故选:D【点评】本题考查了猜想分析归纳得出数列的通项公式的方法、递推式的应用,考查了由特殊到一般的思想方法,考查了推理能力与计算能力,属于难题11【答案】A 【解析】考点:1、函数的周期性;2、奇偶性与单调性的综合.111112【答案】A【解析】解:令x1=0,解得x=1,代入f(x)=4+ax1得,f(1)=5,则函数f(x)过定点(1,5)故选A二、填空题13【答案】70 【解析】解:根据题意二项式展开式中,仅有第五项的二项式系数最大,则n=8,所以二项式=展开式的通项为Tr+1=(1)rC8rx82r令82r=0得r=4则其常数项为C84=70故答案为70【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别14【答案】【解析】因为,所以,所以,所以答案: 15【答案】【解析】【知识点】分段函数,抽象函数与复合函数【试题解析】当时,当时,故的最小值为故答案为: 16【答案】30 【解析】解:取AD的中点G,连接EG,GF则EGDC=2,GFAB=1,故GEF即为EF与CD所成的角又FEABFEGF在RtEFG中EG=2,GF=1故GEF=30故答案为:30【点评】此题的关键是作出AD的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了17【答案】(,) 【解析】解:设C(a,b)则a2+b2=1,点A(2,0),点B(0,3),直线AB的解析式为:3x+2y6=0如图,过点C作CFAB于点F,欲使ABC的面积最小,只需线段CF最短则CF=,当且仅当2a=3b时,取“=”,a=,联立求得:a=,b=,故点C的坐标为(,)故答案是:(,)【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题18【答案】5【解析】试题分析:考点:导数与极值三、解答题19【答案】 【解析】解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点当直线l的斜率存在时,设直线l的方程为y2=k(x1),代入C的方程,并整理得(2k2)x2+2(k22k)xk2+4k6=0 (*)()当2k2=0,即k=时,方程(*)有一个根,l与C有一个交点所以l的方程为()当2k20,即k时=2(k22k)24(2k2)(k2+4k6)=16(32k),当=0,即32k=0,k=时,方程(*)有一个实根,l与C有一个交点所以l的方程为3x2y+1=0综上知:l的方程为x=1或或3x2y+1=0(2)假设以P为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),则2x12y12=2,2x22y22=2,两式相减得2(x1x2)(x1+x2)=(y1y2)(y1+y2)又x1+x2=2,y1+y2=4,2(x1x2)=4(y1y2)即kAB=,直线AB的方程为y2=(x1),代入双曲线方程2x2y2=2,可得,15y248y+34=0,由于判别式为482415340,则该直线AB存在 【点评】本题考查了直线和曲线的交点问题,考查直线方程问题,考查分类讨论思想,是一道中档题20【答案】(1)当时,有个公共点,当时,有个公共点,当时,有个公共点;(2)证明见解析.【解析】试题分析:(1)零点的个数就是对应方程根的个数,分离变量可得,构造函数,利用求出单调性可知在的最小值,根据原函数的单调性可讨论得零点个数;(2)构造函数,利用导数可判断的单调性和极值情况,可证明.1试题解析:当时,有0个公共点;当,有1个公共点;当有2个公共点.(2)证明:设,则,令,则,因为,所以,当时,;在上是减函数,当时,在上是增函数,考点:1.函数的极值;2.函数的单调性与导数的关系;3.不等式;4.函数的零点.【方法点睛】本题主要考查函数的极值,函数的单调性与导数的关系,不等式,函数的零点.有关零点问题一类题型是直接求零点,另一类是确定零点的个数.确定函数零点的常用方法:(1)解方程判定法,若方程易求解时用此法;(2)零点存在的判定定理法,常常要结合函数的性质,导数等知识;(3)数形结合法.在研究函数零点,方程的根及图象交点的问题时,当从正面求解难以入手,可以转化为某一个易入手的等价问题求解,如求解含绝对值,分式,三角式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.21【答案】 【解析】解:()设数列an的公比为q,由an0可得q0,且a3a22a1=0,化简得q2q2=0,解得q=2或q=1(舍),a3=a1q2=4a1=8,a1=2,数列an是以首项和公比均为2的等比数列,an=2n;()由(I)知bn=log2an=n,anbn=n2n,Sn=121+222+323+(n1)2n1+n2n,2Sn=122+223+(n2)2n1+(n1)2n+n2n+1,两式相减,得Sn=21+22+23+2n1+2nn2n+1,Sn=n2n+1,Sn=2+(n1)2n+1【点评】本题考查等比数列的通项公式,错位相减法求和等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查函数与方程思想、化归与转化思想,注意解题方法的积累,属于中档题22【答案】 【解析】(本小题满分10分)解:(1),2分在锐角ABC中,3分故sinA0,5分(2),6分,即ab=2,8分10分【点评】本题主要考查了正弦定理,特殊角的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 多元化教学模式下本科生电子技术适应力的提升策略
- 内部控制机制在民营企业财务风险防控中的作用
- 2025年医疗大数据在公共卫生事件预警中的应用报告
- 2025年养老金制度改革与金融市场投资机会匹配分析报告
- 2025年养老护理市场规模预测与综合服务模式创新分析报告
- 2025年休闲农业与乡村旅游融合发展规划报告:农村民宿市场分析
- 教育心理学与学生兴趣的培养和激发
- DB1303-T 324-2022 海绵城市 老旧小区改造技术导则
- 学生心理调适在校园生活中的应用
- 教育机器人技术的教学效果与挑战分析
- 来料质量异常反馈单
- n系列蒸汽型溴化锂吸收式冷水机组f.ju.1
- 会展策划与管理高水平专业群建设项目建设方案
- 2021-2022学年江苏省扬州市高一下学期期末地理试题
- 司炉岗位应急处置卡(燃气)参考
- 最新四川省教师资格认定体检表
- 串并联电路电压表电流表(课堂PPT)
- XXX县第三次国土调查技术报告
- 3中国电信现场综合化维护培训教材安全篇
- 肝硬化基本知识ppt课件
- 国家开放大学《流通概论》章节测试参考答案
评论
0/150
提交评论