老边区高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
老边区高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
老边区高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
老边区高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
老边区高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

老边区高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 为得到函数的图象,只需将函数y=sin2x的图象( )A向左平移个长度单位B向右平移个长度单位C向左平移个长度单位D向右平移个长度单位2 =( )A2B4CD23 复数i1(i是虚数单位)的虚部是( )A1B1CiDi4 实数a=0.2,b=log0.2,c=的大小关系正确的是( )AacbBabcCbacDbca5 等于( )A B C D6 函数g(x)是偶函数,函数f(x)=g(xm),若存在(,),使f(sin)=f(cos),则实数m的取值范围是( )A()B(,C()D(7 已知定义域为的偶函数满足对任意的,有,且当时,.若函数在上至少有三个零点,则实数的取值范围是( )111A B C D8 设xR,则x2的一个必要不充分条件是( )Ax1Bx1Cx3Dx3 9 两个随机变量x,y的取值表为x0134y2.24.34.86.7若x,y具有线性相关关系,且bx2.6,则下列四个结论错误的是( )Ax与y是正相关B当y的估计值为8.3时,x6C随机误差e的均值为0D样本点(3,4.8)的残差为0.6510函数是指数函数,则的值是( )A4 B1或3 C3 D111已知集合A=0,1,2,则集合B=xy|xA,yA中元素的个数是( )A1B3C5D912若定义在R上的函数f(x)满足:对任意x1,x2R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是( )Af(x)为奇函数Bf(x)为偶函数Cf(x)+1为奇函数Df(x)+1为偶函数二、填空题13Sn=+=14设f(x)是奇函数f(x)(xR)的导函数,f(2)=0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是15函数y=sin2x2sinx的值域是y16【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,其中为自然对数的底数,则不等式的解集为_17无论m为何值时,直线(2m+1)x+(m+1)y7m4=0恒过定点18设函数,其中x表示不超过x的最大整数若方程f(x)=ax有三个不同的实数根,则实数a的取值范围是三、解答题19一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:转速x(转/秒)1614128每小时生产有缺陷的零件数y(件)11985(1)画出散点图; (2)如果y与x有线性相关的关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围内?参考公式:线性回归方程系数公式开始=, =x20中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0p1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率()设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P(列代数式表示)()现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率21若已知,求sinx的值22(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程(2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程23(本小题满分13分)在四棱锥中,底面是直角梯形,()在棱上确定一点,使得平面;()若,求直线与平面所成角的大小24函数f(x)=Asin(x+)(A0,0,|)的一段图象如图所示 (1)求f(x)的解析式;(2)求f(x)的单调减区间,并指出f(x)的最大值及取到最大值时x的集合;(3)把f(x)的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数 老边区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:,只需将函数y=sin2x的图象向左平移个单位得到函数的图象故选A【点评】本题主要考查诱导公式和三角函数的平移属基础题2 【答案】A【解析】解:(cosxsinx)=sinxcosx,=2故选A3 【答案】A【解析】解:由复数虚部的定义知,i1的虚部是1,故选A【点评】该题考查复数的基本概念,属基础题4 【答案】C【解析】解:根据指数函数和对数函数的性质,知log0.20,00.21,即0a1,b0,c1,bac故选:C【点评】本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的性质是解决本题的关键5 【答案】D【解析】试题分析:原式考点:余弦的两角和公式.6 【答案】A【解析】解:函数g(x)是偶函数,函数f(x)=g(xm),函数f(x)关于x=m对称,若(,),则sincos,则由f(sin)=f(cos),则=m,即m=(sin+cos)=sin(+)当(,),则+(,),则sin(+),则m,故选:A【点评】本题主要考查函数奇偶性和对称性之间的应用以及三角函数的图象和性质,利用辅助角公式是解决本题的关键7 【答案】B【解析】试题分析:,令,则,是定义在上的偶函数,则函数是定义在上的,周期为的偶函数,又当时,令,则与在的部分图象如下图,在上至少有三个零点可化为与的图象在上至少有三个交点,在上单调递减,则,解得:故选A考点:根的存在性及根的个数判断.【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得是周期函数,其周期为,要使函数在上至少有三个零点,等价于函数的图象与函数的图象在上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围. 8 【答案】A【解析】解:当x2时,x1成立,即x1是x2的必要不充分条件是,x1是x2的既不充分也不必要条件,x3是x2的充分条件,x3是x2的既不充分也不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础9 【答案】【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入bx2.6得b0.95,即0.95x2.6,当8.3时,则有8.30.95x2.6,x6,B正确根据性质,随机误差的均值为0,C正确样本点(3,4.8)的残差4.8(0.9532.6)0.65,D错误,故选D.10【答案】C【解析】考点:指数函数的概念11【答案】C【解析】解:A=0,1,2,B=xy|xA,yA,当x=0,y分别取0,1,2时,xy的值分别为0,1,2;当x=1,y分别取0,1,2时,xy的值分别为1,0,1;当x=2,y分别取0,1,2时,xy的值分别为2,1,0;B=2,1,0,1,2,集合B=xy|xA,yA中元素的个数是5个故选C12【答案】C【解析】解:对任意x1,x2R有f(x1+x2)=f(x1)+f(x2)+1,令x1=x2=0,得f(0)=1令x1=x,x2=x,得f(0)=f(x)+f(x)+1,f(x)+1=f(x)1=f(x)+1,f(x)+1为奇函数故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答二、填空题13【答案】 【解析】解: =(),Sn=+= (1)+()+()+()=(1)=,故答案为:【点评】本题主要考查利用裂项法进行数列求和,属于中档题14【答案】(2,0)(2,+) 【解析】解:设g(x)=,则g(x)的导数为:g(x)=,当x0时总有xf(x)f(x)0成立,即当x0时,g(x)0,当x0时,函数g(x)为增函数,又g(x)=g(x),函数g(x)为定义域上的偶函数,x0时,函数g(x)是减函数,又g(2)=0=g(2),x0时,由f(x)0,得:g(x)g(2),解得:x2,x0时,由f(x)0,得:g(x)g(2),解得:x2,f(x)0成立的x的取值范围是:(2,0)(2,+)故答案为:(2,0)(2,+)15【答案】1,3 【解析】解:函数y=sin2x2sinx=(sinx1)21,1sinx1,0(sinx1)24,1(sinx1)213函数y=sin2x2sinx的值域是y1,3故答案为1,3【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键16【答案】【解析】,即函数为奇函数,又恒成立,故函数在上单调递增,不等式可转化为,即,解得:,即不等式的解集为,故答案为.17【答案】(3,1) 【解析】解:由(2m+1)x+(m+1)y7m4=0,得即(2x+y7)m+(x+y4)=0,2x+y7=0,且x+y4=0,一次函数(2m+1)x+(m+1)y7m4=0的图象就和m无关,恒过一定点 由,解得解之得:x=3 y=1 所以过定点(3,1);故答案为:(3,1)18【答案】(1,) 【解析】解:当2x1时,x=2,此时f(x)=xx=x+2当1x0时,x=1,此时f(x)=xx=x+1当0x1时,1x10,此时f(x)=f(x1)=x1+1=x当1x2时,0x11,此时f(x)=f(x1)=x1当2x3时,1x12,此时f(x)=f(x1)=x11=x2当3x4时,2x13,此时f(x)=f(x1)=x12=x3设g(x)=ax,则g(x)过定点(0,0),坐标系中作出函数y=f(x)和g(x)的图象如图:当g(x)经过点A(2,1),D(4,1)时有3个不同的交点,当经过点B(1,1),C(3,1)时,有2个不同的交点,则OA的斜率k=,OB的斜率k=1,OC的斜率k=,OD的斜率k=,故满足条件的斜率k的取值范围是或,故答案为:(1,)【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想三、解答题19【答案】 【解析】【专题】应用题;概率与统计【分析】(1)利用所给的数据画出散点图;(2)先做出横标和纵标的平均数,做出利用最小二乘法求线性回归方程的系数的量,做出系数,求出a,写出线性回归方程(3)根据上一问做出的线性回归方程,使得函数值小于或等于10,解出不等式【解答】解:(1)画出散点图,如图所示:(2)=12.5, =8.25,b=0.7286,a=0.8575回归直线方程为:y=0.7286x0.8575;(3)要使y10,则0.728 6x0.857510,x14.901 9故机器的转速应控制在14.9转/秒以下【点评】本题考查线性回归分析,考查线性回归方程,考查线性回归方程的应用,考查不等式的解法,是一个综合题目20【答案】 【解析】解:()由题意可知:XB(9,p),故EX=9p在通讯器械配置的9个元件中,恰有5个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有6个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有7个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有8个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有9个元件正常工作的概率为:通讯器械正常工作的概率P=;()当电路板上有11个元件时,考虑前9个元件,为使通讯器械正常工作,前9个元件中至少有4个元件正常工作若前9个元素有4个正常工作,则它的概率为:此时后两个元件都必须正常工作,它的概率为: p2;若前9个元素有5个正常工作,则它的概率为:此时后两个元件至少有一个正常工作,它的概率为:;若前9个元素至少有6个正常工作,则它的概率为:;此时通讯器械正常工作,故它的概率为:P=p2+,可得PP=p2+,=故当p=时,P=P,即增加2个元件,不改变通讯器械的有效率;当0p时,PP,即增加2个元件,通讯器械的有效率降低;当p时,PP,即增加2个元件,通讯器械的有效率提高【点评】本题考查二项分布,考查了相互独立事件及其概率,关键是对题意的理解,属概率统计部分难度较大的题目21【答案】 【解析】解:,2,sin()=sinx=sin(x+)=sin()coscos()sin=【点评】本题考查了两角和差的余弦函数公式,属于基础题22【答案】 【解析】解:(1)由所求椭圆与椭圆有相同的焦点,设椭圆方程,由(4,3)在椭圆上得,则椭圆方程为;(2)由双曲线有相同的渐近线,设所求双曲线的方程为=1(0),由题意可得c2=4|+9|=13,解得=1即有双曲线的方程为=1或=123【答案】 【解析】解: ()当时,平面.设为上一点,且,连结、,那么,.,又平面, 平面,平面 (5分)()设、分别为、的中点,连结、,易知,平面,又,平面 (8分)建立空间直角坐标系(如图),其中轴,轴,则有,由知 (9分)设平面的法向量为,,则 即,取.设直线与平面所成角为,则,直线与平面所成角为. (13分)24【答案】 【解析】解:(1)由函数的图象可得A=3, T=4,解得=再根据五点法作图可得+=0,求得=,f(x)=3sin(x)(2)令2kx2k+,kz,求得 5kx5k+,故函数的增

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论