




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浦东新区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设偶函数f(x)满足f(x)=2x4(x0),则x|f(x2)0=( )Ax|x2或x4Bx|x0或x4Cx|x0或x6Dx|0x4 2 已知函数()在定义域上为单调递增函数,则的最小值是( )A B C D 3 函数,的值域为( ) A. B. C. D.4 Sn是等差数列an的前n项和,若3a82a74,则下列结论正确的是( )AS1872 BS1976CS2080 DS21845 数列an的通项公式为an=n+p,数列bn的通项公式为bn=2n5,设cn=,若在数列cn中c8cn(nN*,n8),则实数p的取值范围是( )A(11,25)B(12,16C(12,17)D16,17)6 若f(x)=x2+2ax与g(x)=在区间1,2上都是减函数,则a的取值范围是( )A(,1B0,1C(2,1)(1,1D(,2)(1,17 三个实数a、b、c成等比数列,且a+b+c=6,则b的取值范围是( )A6,2B6,0)( 0,2C2,0)( 0,6D(0,28 已知全集U=0,1,2,3,4,集合A=0,1,3,B=0,1,4,则(UA)B为( )A0,1,2,4B0,1,3,4C2,4D49 已知双曲线的渐近线与圆x2+(y2)2=1相交,则该双曲线的离心率的取值范围是( )A(,+)B(1,)C(2+)D(1,2)10下列各组函数中,表示同一函数的是( )A、x与 B、 与 C、与 D、与11在下面程序框图中,输入,则输出的的值是( )A B C D【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.12双曲线:的渐近线方程和离心率分别是( )ABCD二、填空题13【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数 的取值范围为_14定义:分子为1且分母为正整数的分数叫做单位分数我们可以把1拆分为无穷多个不同的单位分数之和例如:1=+,1=+,1=+,依此方法可得:1=+,其中m,nN*,则m+n=15已知圆C1:(x2)2+(y3)2=1,圆C2:(x3)2+(y4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值16已知函数f(x)=,则关于函数F(x)=f(f(x)的零点个数,正确的结论是(写出你认为正确的所有结论的序号)k=0时,F(x)恰有一个零点k0时,F(x)恰有2个零点k0时,F(x)恰有3个零点k0时,F(x)恰有4个零点17已知,则不等式的解集为_【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力18开始输出结【 解析】由已知圆心在直线上,所以圆心,又因为与圆外切于原点,且半径为,可求得,舍去。所以圆的标准方程为束是否与圆外切于原点,且半径为 的圆的标准方程为 三、解答题19(本题满分14分)在中,角,所对的边分别为,已知(1)求角的大小; (2)若,求的取值范围【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力20设圆C满足三个条件过原点;圆心在y=x上;截y轴所得的弦长为4,求圆C的方程21函数。定义数列如下:是过两点的直线与轴交点的横坐标。(1)证明:;(2)求数列的通项公式。22在直角坐标系xOy中,曲线C1的参数方程为C1:为参数),曲线C2: =1()在以O为极点,x轴的正半轴为极轴的极坐标系中,求C1,C2的极坐标方程;()射线=(0)与C1的异于极点的交点为A,与C2的交点为B,求|AB| 23已知椭圆:(),点在椭圆上,且椭圆的离心率为(1)求椭圆的方程;(2)过椭圆的右焦点的直线与椭圆交于,两点,为椭圆的右顶点,直线,分别交直线:于、两点,求证:24若函数f(x)=ax(a0,且a1)在1,2上的最大值比最小值大,求a的值浦东新区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:偶函数f(x)=2x4(x0),故它的图象关于y轴对称,且图象经过点(2,0)、(0,3),(2,0),故f(x2)的图象是把f(x)的图象向右平移2个单位得到的,故f(x2)的图象经过点(0,0)、(2,3),(4,0),则由f(x2)0,可得 0x4,故选:D【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题2 【答案】A【解析】试题分析:由题意知函数定义域为,因为函数()在定义域上为单调递增函数在定义域上恒成立,转化为在恒成立,故选A. 1考点:导数与函数的单调性3 【答案】A【解析】试题分析:函数在区间上递减,在区间上递增,所以当x=1时,当x=3时,所以值域为。故选A。考点:二次函数的图象及性质。4 【答案】【解析】选B.3a82a74,3(a17d)2(a16d)4,即a19d4,S1818a118(a1d)不恒为常数S1919a119(a19d)76,同理S20,S21均不恒为常数,故选B.5 【答案】C【解析】解:当anbn时,cn=an,当anbn时,cn=bn,cn是an,bn中的较小者,an=n+p,an是递减数列,bn=2n5,bn是递增数列,c8cn(n8),c8是cn的最大者,则n=1,2,3,7,8时,cn递增,n=8,9,10,时,cn递减,n=1,2,3,7时,2n5n+p总成立,当n=7时,2757+p,p11,n=9,10,11,时,2n5n+p总成立,当n=9时,2959+p,成立,p25,而c8=a8或c8=b8,若a8b8,即23p8,p16,则c8=a8=p8,p8b7=275,p12,故12p16, 若a8b8,即p8285,p16,c8=b8=23,那么c8c9=a9,即8p9,p17,故16p17,综上,12p17故选:C6 【答案】D【解析】解:函数f(x)=x2+2ax的对称轴为x=a,开口向下,单调间区间为a,+)又f(x)在区间1,2上是减函数,a1函数g(x)=在区间(,a)和(a,+)上均为减函数,g(x)=在区间1,2上是减函数,a2,或a1,即a2,或a1,综上得a(,2)(1,1,故选:D【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围7 【答案】B【解析】解:设此等比数列的公比为q,a+b+c=6,=6,b=当q0时, =2,当且仅当q=1时取等号,此时b(0,2;当q0时,b=6,当且仅当q=1时取等号,此时b6,0)b的取值范围是6,0)( 0,2故选:B【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题8 【答案】A【解析】解:U=0,1,2,3,4,集合A=0,1,3,CUA=2,4,B=0,1,4,(CUA)B=0,1,2,4故选:A【点评】本题考查集合的交、交、补集的混合运算,是基础题解题时要认真审题,仔细解答9 【答案】C【解析】解:双曲线渐近线为bxay=0,与圆x2+(y2)2=1相交圆心到渐近线的距离小于半径,即13a2b2,c2=a2+b24a2,e=2故选:C【点评】本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等考查了学生数形结合的思想的运用10【答案】C【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:定义域相同,对应法则相同。选项A中两个函数定义域不同,选项B中两个函数对应法则不同,选项D中两个函数定义域不同。故选C。考点:同一函数的判定。11【答案】B12【答案】D【解析】解:双曲线:的a=1,b=2,c=双曲线的渐近线方程为y=x=2x;离心率e=故选 D二、填空题13【答案】【解析】令,则所以为奇函数且单调递增,因此即点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内14【答案】33 【解析】解:1=+,2=12,6=23,30=56,42=67,56=78,72=89,90=910,110=1011,132=1112,1=+=(1)+()+,+=+=,m=20,n=13,m+n=33,故答案为:33【点评】本题考查的知识点是归纳推理,但本题运算强度较大,属于难题15【答案】54 【解析】解:如图,圆C1关于x轴的对称圆的圆心坐标A(2,3),半径为1,圆C2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即:4=54故答案为:54【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题16【答案】 【解析】解:当k=0时,当x0时,f(x)=1,则f(f(x)=f(1)=0,此时有无穷多个零点,故错误;当k0时,()当x0时,f(x)=kx+11,此时f(f(x)=f(kx+1)=,令f(f(x)=0,可得:x=0;()当0x1时,此时f(f(x)=f()=,令f(f(x)=0,可得:x=,满足;()当x1时,此时f(f(x)=f()=k+10,此时无零点综上可得,当k0时,函数有两零点,故正确;当k0时,()当x时,kx+10,此时f(f(x)=f(kx+1)=k(kx+1)+1,令f(f(x)=0,可得:,满足;()当时,kx+10,此时f(f(x)=f(kx+1)=,令f(f(x)=0,可得:x=0,满足;()当0x1时,此时f(f(x)=f()=,令f(f(x)=0,可得:x=,满足;()当x1时,此时f(f(x)=f()=k+1,令f(f(x)=0得:x=1,满足;综上可得:当k0时,函数有4个零点故错误,正确故答案为:【点评】本题考查复合函数的零点问题考查了分类讨论和转化的思想方法,要求比较高,属于难题17【答案】【解析】函数在递增,当时,解得;当时,解得,综上所述,不等式的解集为18【答案】 【解析】由已知圆心在直线上,所以圆心,又因为与圆外切于原点,且半径为,可求得,舍去。所以圆的标准方程为三、解答题19【答案】(1);(2).【解析】20【答案】 【解析】解:根据题意画出图形,如图所示:当圆心C1在第一象限时,过C1作C1D垂直于x轴,C1B垂直于y轴,连接AC1,由C1在直线y=x上,得到C1B=C1D,则四边形OBC1D为正方形,与y轴截取的弦OA=4,OB=C1D=OD=C1B=2,即圆心C1(2,2),在直角三角形ABC1中,根据勾股定理得:AC1=2,则圆C1方程为:(x2)2+(y2)2=8;当圆心C2在第三象限时,过C2作C2D垂直于x轴,C2B垂直于y轴,连接AC2,由C2在直线y=x上,得到C2B=C2D,则四边形OBC2D为正方形,与y轴截取的弦OA=4,OB=C2D,=OD=C2B=2,即圆心C2(2,2),在直角三角形ABC2中,根据勾股定理得:AC2=2,则圆C1方程为:(x+2)2+(y+2)2=8,圆C的方程为:(x2)2+(y2)2=8或(x+2)2+(y+2)2=8【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题21【答案】【解析】(1)为,故点在函数的图像上,故由所给出的两点,可知,直线斜率一定存在。故有直线的直线方程为,令,可求得所以下面用数学归纳法证明当时,满足假设时,成立,则当时,22【答案】 【解析】解:()曲线为参数)可化为普通方程:(x1)2+y2=1,由可得曲线C1的极坐标方程为=2cos,曲线C2的极坐标方程为2(1+sin2)=2()射线与曲线C1的交点A的极径为,射线与曲线C2的交点B的极径满足,解得,所以 23【答案】() ;()证明见解析【解析】试题分析: ()由题中条件要得两个等式,再由椭圆中的等式关系可得的值,求得椭圆的方程;()可设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护士技能考试题及答案
- 护理常考试题及答案
- 情景面试题目00及答案
- 安全知识考核试题及答案
- 医学临床试题及答案
- 艺术教育试题及答案
- 海员急救考试题及答案
- 海南联考试题及答案
- 品牌红酒活动方案
- 商场定向活动方案
- 临床胆汁酸检测
- 工伤保险待遇申请表
- 《酒店礼仪知识培训》课件
- 脑挫伤病因介绍
- 2024-2030年中国连锁药店行业市场发展状况及投资前景规划研究报告
- 灾难事故避险自救-终结性考核-国开(SC)-参考资料
- 2025年中考物理终极押题猜想(广东省卷专用)(原卷版)
- 小学科学三年级下册《5自制小乐器》课件
- 六年级语文下册 期末复习非连续性文本阅读专项训练(一)(含答案)(部编版)
- 降低制粉单耗(集控五值)-2
- 电力分包项目合同范本
评论
0/150
提交评论