富顺县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
富顺县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
富顺县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
富顺县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
富顺县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

富顺县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设函数,其中,若存在唯一的整数,使得,则的取值范围是( )A B C D11112 设为虚数单位,则()A B C D3 “为真”是“为假”的( )条件A充分不必要 B必要不充分 C充要 D既不充分也不必要4 设集合A=x|x2|2,xR,B=y|y=x2,1x2,则R(AB)等于( )ARBx|xR,x0C0D5 若函数f(x)=loga(2x2+x)(a0且a1)在区间(0,)内恒有f(x)0,则f(x)的单调递增区间为( )A(,)B(,+)C(0,+)D(,)6 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队首发要求每个班至少1人,至多2人,则首发方案数为( )A720B270C390D3007 利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定断言“X和Y有关系”的可信度,如果k5.024,那么就有把握认为“X和Y有关系”的百分比为( )P(K2k)0.500.400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828A25%B75%C2.5%D97.5%8 “双曲线C的渐近线方程为y=x”是“双曲线C的方程为=1”的( )A充要条件B充分不必要条件C必要不充分条件D不充分不必要条件9 已知变量满足约束条件,则的取值范围是( )A B C D10下列各组函数中,表示同一函数的是( )Ay=1,y=x0By=,y=Cy=x,y=Dy=|x|,t=()211连续抛掷两次骰子得到的点数分别为m和n,记向量=(m,n),向量=(1,2),则的概率是( )ABCD12用一平面去截球所得截面的面积为2,已知球心到该截面的距离为1,则该球的体积是( )AB2C4D 二、填空题13设是空间中给定的个不同的点,则使成立的点的个数有_个14若实数满足,则的最小值为 15已知f(x)=,则ff(0)=16在ABC中,若角A为锐角,且=(2,3),=(3,m),则实数m的取值范围是17集合A=x|1x3,B=x|x1,则AB=18设x,y满足约束条件,则目标函数z=2x3y的最小值是三、解答题19如图,在四棱柱中,底面,()求证:平面;()求证:;()若,判断直线与平面是否垂直?并说明理由20 坐标系与参数方程线l:3x+4y12=0与圆C:(为参数 )试判断他们的公共点个数 21(本小题满分12分)已知等差数列的前项和为,且,(1)求的通项公式和前项和;(2)设,为数列的前项和,若不等式对于任意的恒成立,求实数的取值范围22【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,其中(1)当时,求函数在上的值域;(2)若函数在上的最小值为3,求实数的取值范围.23已知椭圆C的中心在坐标原点O,长轴在x轴上,离心率为,且椭圆C上一点到两个焦点的距离之和为4()椭圆C的标准方程()已知P、Q是椭圆C上的两点,若OPOQ,求证:为定值()当为()所求定值时,试探究OPOQ是否成立?并说明理由 24命题p:关于x的不等式x2+2ax+40对一切xR恒成立,q:函数f(x)=(32a)x是增函数若pq为真,pq为假求实数a的取值范围富顺县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】考点:函数导数与不等式1【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令将函数变为两个函数,将题意中的“存在唯一整数,使得在直线的下方”,转化为存在唯一的整数,使得在直线的下方.利用导数可求得函数的极值,由此可求得的取值范围. 2 【答案】C【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C3 【答案】B【解析】试题分析:因为假真时,真,此时为真,所以,“ 真”不能得“为假”,而“为假”时为真,必有“ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用.4 【答案】B【解析】解:A=0,4,B=4,0,所以AB=0,R(AB)=x|xR,x0,故选B5 【答案】D【解析】解:当x(0,)时,2x2+x(0,1),0a1,函数f(x)=loga(2x2+x)(a0,a1)由f(x)=logat和t=2x2+x复合而成,0a1时,f(x)=logat在(0,+)上是减函数,所以只要求t=2x2+x0的单调递减区间t=2x2+x0的单调递减区间为(,),f(x)的单调增区间为(,),故选:D【点评】本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件6 【答案】C 解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队各个班的人数有5班的3人、16班的4人、33班的5人,首发共有1、2、2;2、1、2;2、2、1类型;所求方案有: +=390故选:C7 【答案】D【解析】解:k5、024,而在观测值表中对应于5.024的是0.025,有10.025=97.5%的把握认为“X和Y有关系”,故选D【点评】本题考查独立性检验的应用,是一个基础题,这种题目出现的机会比较小,但是一旦出现,就是我们必得分的题目8 【答案】C【解析】解:若双曲线C的方程为=1,则双曲线的方程为,y=x,则必要性成立,若双曲线C的方程为=2,满足渐近线方程为y=x,但双曲线C的方程为=1不成立,即充分性不成立,故“双曲线C的渐近线方程为y=x”是“双曲线C的方程为=1”的必要不充分条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据双曲线和渐近线之间的关系是解决本题的关键9 【答案】A【解析】试题分析:作出可行域,如图内部(含边界),表示点与原点连线的斜率,易得,所以故选A考点:简单的线性规划的非线性应用10【答案】C【解析】解:A中的两个函数y=1,y=x0,定义域不同,故不是同一个函数B中的两个函数定义域不同,故不是同一个函数C中的两个函数定义域相同,y=x,y=x,对应关系一样,故是同一个函数D中的两个函数定义域不同,故不是同一个函数综上,只有C中的两个函数是同一个函数故选:C11【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m,n),有36种可能,而使的m,n满足m=2n,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得的概率是:;故选:A【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题12【答案】C【解析】解:用一平面去截球所得截面的面积为2,所以小圆的半径为: cm;已知球心到该截面的距离为1,所以球的半径为:,所以球的体积为: =4故选:C二、填空题13【答案】1【解析】【知识点】平面向量坐标运算【试题解析】设设,则因为,所以,所以因此,存在唯一的点M,使成立。故答案为:14【答案】5【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f(x)0或f(x)0求单调区间;第二步:解f(x)0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小15【答案】1 【解析】解:f(0)=01=1,ff(0)=f(1)=21=1,故答案为:1【点评】本题考查了分段函数的简单应用16【答案】 【解析】解:由于角A为锐角,且不共线,6+3m0且2m9,解得m2且m实数m的取值范围是故答案为:【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题17【答案】x|1x1 【解析】解:A=x|1x3,B=x|x1,AB=x|1x1,故答案为:x|1x1【点评】本题主要考查集合的基本运算,比较基础18【答案】6 【解析】解:由约束条件,得可行域如图,使目标函数z=2x3y取得最小值的最优解为A(3,4),目标函数z=2x3y的最小值为z=2334=6故答案为:6三、解答题19【答案】【解析】【知识点】垂直平行【试题解析】()证明:因为,平面,平面,所以平面因为,平面,平面,所以平面又因为,所以平面平面又因为平面,所以平面()证明:因为底面,底面,所以又因为,所以平面又因为底面,所以()结论:直线与平面不垂直证明:假设平面,由平面,得由棱柱中,底面,可得,又因为,所以平面,所以又因为,所以平面,所以这与四边形为矩形,且矛盾,故直线与平面不垂直20【答案】 【解析】解:圆C:的标准方程为(x+1)2+(y2)2=4由于圆心C(1,2)到直线l:3x+4y12=0的距离d=2故直线与圆相交故他们的公共点有两个【点评】本题考查的知识点是直线与圆的位置关系,圆的参数方程,其中将圆的参数方程化为标准方程,进而求出圆心坐标和半径长是解答本题的关键 21【答案】【解析】【命题意图】本题考查等差数列通项与前项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用22【答案】(1);(2).【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得,再分和两种情况进行讨论;试题解析:(1)解: 时, 则 令得列表+ -+单调递增单调递减单调递增 21 由上表知函数的值域为 (2)方法一:当时,函数在区间单调递增所以 即(舍) 当时,函数在区间单调递减 所以 符合题意 当时,当时,区间在单调递减当时,区间在单调递增 所以化简得:即所以或(舍)注:也可令则对在单调递减所以不符合题意综上所述:实数取值范围为方法二:当时,函数在区间单调递减 所以 符合题意 8分当时,函数在区间单调递增所以不符合题意 当时,当时,区间在单调递减当时,区间在单调递增 所以不符合题意综上所述:实数取值范围为23【答案】 【解析】(I)解:由题意可设椭圆的坐标方程为(ab0)离心率为,且椭圆C上一点到两个焦点的距离之和为4,2a=4,解得a=2,c=1b2=a2c2=3椭圆C的标准方程为(II)证明:当OP与OQ的斜率都存在时,设直线OP的方程为y=kx(k0),则直线OQ的方程为y=x(k0),P(x,y)联立,化为,|OP|2=x2+y2=,同理可得|OQ|2=,=+=为定值当直线OP或OQ的斜率一个为0而另一个不存在时,上式也成立因此=为定值(III)当=定值时,试探究OPOQ是否成立?并说明理由OPOQ不一定成立下面给出证明证明:当直线OP或OQ的斜率一个为0而另一个不存在时,则=,满足条件当直线OP或OQ的斜率都存在时,设直线OP的方程为y=kx(k0),则直线OQ的方程为y=kx(kk,k0),P(x,y)联立,化为,|OP|2=x2+y2=,同理可得|OQ|2=,=+=化为(kk)2=1,kk=1OPOQ或kk=1因此OPOQ不一定成立【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、相互垂直的直线斜

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论