




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
凤翔县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知命题p:22,命题q:x0R,使得x02+2x0+2=0,则下列命题是真命题的是( )ApBpqCpqDpq2 设a,bR且a+b=3,b0,则当+取得最小值时,实数a的值是( )ABC或D33 设函数,则有( )Af(x)是奇函数,Bf(x)是奇函数, y=bxCf(x)是偶函数Df(x)是偶函数,4 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为、的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A96B48C24D05 已知集合(其中为虚数单位),则( )A B C D6 在中,那么一定是( )A锐角三角形 B直角三角形 C等腰三角形 D等腰三角形或直角三角形7 某大学的名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车,每车限坐名同学(乘同一辆车的名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的名同学中恰有名同学是来自同一年级的乘坐方式共有( )种.A B C D【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力8 在区域内任意取一点P(x,y),则x2+y21的概率是( )A0BCD9 已知全集I=1,2,3,4,5,6,7,8,集合M=3,4,5,集合N=1,3,6,则集合2,7,8是( )AMNBMNCIMINDIMIN10高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队首发要求每个班至少1人,至多2人,则首发方案数为( )A720B270C390D30011在复平面内,复数(4+5i)i(i为虚数单位)的共轭复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限12设定义域为(0,+)的单调函数f(x),对任意的x(0,+),都有ff(x)lnx=e+1,若x0是方程f(x)f(x)=e的一个解,则x0可能存在的区间是( )A(0,1)B(e1,1)C(0,e1)D(1,e)二、填空题13,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,若的内切圆半径与外接圆半径之比为,则该双曲线的离心率为_.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力14【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,其中为自然对数的底数,则不等式的解集为_15已知为常数,若,则_.16命题“,”的否定是 17命题“若a0,b0,则ab0”的逆否命题是(填“真命题”或“假命题”)18函数()满足且在上的导数满足,则不等式的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.三、解答题19(本小题满分12分)已知函数,数列满足:,().(1)求数列的通项公式;(2)设数列的前项和为,求数列的前项和.【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.20已知点F(0,1),直线l1:y=1,直线l1l2于P,连结PF,作线段PF的垂直平分线交直线l2于点H设点H的轨迹为曲线r()求曲线r的方程;()过点P作曲线r的两条切线,切点分别为C,D,()求证:直线CD过定点;()若P(1,1),过点O作动直线L交曲线R于点A,B,直线CD交L于点Q,试探究+是否为定值?若是,求出该定值;不是,说明理由阿啊阿21A=x|x23x+2=0,B=x|ax2=0,若BA,求a22如图所示,已知+=1(a0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合()求椭圆C的方程;()求ABD面积的最大值;()设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数,使得k1+k2=0成立?若存在,求出的值;否则说明理由 23已知函数f(x)=xalnx(aR)(1)当a=2时,求曲线y=f(x)在点A(1,f(1)处的切线方程;(2)求函数f(x)的极值24【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=ax2+lnx(aR)(1)当a=时,求f(x)在区间1,e上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)g(x)f2(x),那么就称g(x)为f1(x),f2(x)的“活动函数”已知函数.。若在区间(1,+)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围凤翔县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:命题p:22是真命题,方程x2+2x+2=0无实根,故命题q:x0R,使得x02+2x0+2=0是假命题,故命题p,pq,pq是假命题,命题pq是真命题,故选:D2 【答案】C【解析】解:a+b=3,b0,b=3a0,a3,且a0当0a3时, +=+=f(a),f(a)=+=,当时,f(a)0,此时函数f(a)单调递增;当时,f(a)0,此时函数f(a)单调递减当a=时, +取得最小值当a0时, +=()=(+)=f(a),f(a)=,当时,f(a)0,此时函数f(a)单调递增;当时,f(a)0,此时函数f(a)单调递减当a=时, +取得最小值综上可得:当a=或时, +取得最小值故选:C【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题3 【答案】C【解析】解:函数f(x)的定义域为R,关于原点对称又f(x)=f(x),所以f(x)为偶函数而f()=f(x),故选C【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法4 【答案】 B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系【专题】计算题;压轴题【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为、的4个仓库存放这8种化工产品,求安全存放的不同方法的种数首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况然后求出即可得到答案【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)那么安全存放的不同方法种数为2A44=48故选B【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖5 【答案】D【解析】考点:1.复数的相关概念;2.集合的运算6 【答案】D【解析】试题分析:在中,化简得,解得,即,所以或,即或,所以三角形为等腰三角形或直角三角形,故选D考点:三角形形状的判定【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出,从而得到或是试题的一个难点,属于中档试题7 【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有种. 孪生姐妹不乘坐甲车,则有种. 共有24种. 选A.8 【答案】C【解析】解:根据题意,如图,设O(0,0)、A(1,0)、B(1,1)、C(0,1),分析可得区域表示的区域为以正方形OABC的内部及边界,其面积为1;x2+y21表示圆心在原点,半径为1的圆,在正方形OABC的内部的面积为=,由几何概型的计算公式,可得点P(x,y)满足x2+y21的概率是=;故选C【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算9 【答案】D【解析】解:全集I=1,2,3,4,5,6,7,8,集合M=3,4,5,集合N=1,3,6,MN=1,2,3,6,7,8,MN=3;IMIN=1,2,4,5,6,7,8;IMIN=2,7,8,故选:D10【答案】C 解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队各个班的人数有5班的3人、16班的4人、33班的5人,首发共有1、2、2;2、1、2;2、2、1类型;所求方案有: +=390故选:C11【答案】B【解析】解:(4+5i)i=54i,复数(4+5i)i的共轭复数为:5+4i,在复平面内,复数(4+5i)i的共轭复数对应的点的坐标为:(5,4),位于第二象限故选:B12【答案】 D【解析】解:由题意知:f(x)lnx为常数,令f(x)lnx=k(常数),则f(x)=lnx+k由ff(x)lnx=e+1,得f(k)=e+1,又f(k)=lnk+k=e+1,所以f(x)=lnx+e,f(x)=,x0f(x)f(x)=lnx+e,令g(x)=lnx+e=lnx,x(0,+)可判断:g(x)=lnx,x(0,+)上单调递增,g(1)=1,g(e)=10,x0(1,e),g(x0)=0,x0是方程f(x)f(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题二、填空题13【答案】【解析】14【答案】【解析】,即函数为奇函数,又恒成立,故函数在上单调递增,不等式可转化为,即,解得:,即不等式的解集为,故答案为.15【答案】【解析】试题分析:由,得,即,比较系数得,解得或,则.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简的解析式是解答的关键.16【答案】,【解析】试题分析:“,”的否定是,考点:命题否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;对原命题的结论进行否定.(2)判定全称命题“xM,p(x)”是真命题,需要对集合M中的每个元素x,证明p(x)成立;要判定一个全称命题是假命题,只要举出集合M中的一个特殊值x0,使p(x0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个xx0,使p(x0)成立即可,否则就是假命题.17【答案】真命题 【解析】解:若a0,b0,则ab0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键18【答案】【解析】构造函数,则,说明在上是增函数,且.又不等式可化为,即,解得.不等式的解集为.三、解答题19【答案】【解析】(1),. 即,所以数列是以首项为2,公差为2的等差数列, . (5分)(2)数列是等差数列,. (8分). (12分)20【答案】 【解析】满分(13分)解:()由题意可知,|HF|=|HP|,点H到点F(0,1)的距离与到直线l1:y=1的距离相等,(2分)点H的轨迹是以点F(0,1)为焦点,直线l1:y=1为准线的抛物线,(3分)点H的轨迹方程为x2=4y(4分)()()证明:设P(x1,1),切点C(xC,yC),D(xD,yD)由y=,得直线PC:y+1=xC(xx1),(5分)又PC过点C,yC=,yC+1=xC(xx1)=xCx1,yC+1=,即(6分)同理,直线CD的方程为,(7分)直线CD过定点(0,1)(8分)()由()()P(1,1)在直线CD的方程为,得x1=1,直线CD的方程为设l:y+1=k(x1),与方程联立,求得xQ=(9分)设A(xA,yA),B(xB,yB)联立y+1=k(x1)与x2=4y,得x24kx+4k+4=0,由根与系数的关系,得xA+xB=4kxAxB=4k+4(10分)xQ1,xA1,xB1同号,+=|PQ|=(11分)=,+为定值,定值为2(13分)【点评】本题主要考查直线、抛物线、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、化归与转化思想,考查考生分析问题和解决问题的能力21【答案】 【解析】解:解:集合A=x|x23x+2=0=1,2BA,(1)B=时,a=0(2)当B=1时,a=2(3)当B=2时,a=1故a值为:2或1或022【答案】 【解析】解:(),a=c,b2=c2椭圆方程为+=1又点A(1,)在椭圆上,=1,c2=2a=2,b=,椭圆方程为=1 ()设直线BD方程为y=x+b,D(x1,y1),B(x2,y2),与椭圆方程联立,可得4x2+2bx+b24=0=8b2+640,2b2x1+x2=b,x1x2=|BD|=,设d为点A到直线y=x+b的距离,d=ABD面积S=当且仅当b=2时,ABD的面积最大,最大值为 ()当直线BD过椭圆左顶点(,0)时,k1=2,k2=2此时k1+k2=0,猜想=1时成立证明如下:k1+k2=+=2+m=22=0当=1,k1+k2=0,故当且仅当=1时满足条件【点评】本题考查直线与椭圆方程的综合应用,考查存在性问题的处理方法,椭圆方程的求法,韦达定理的应用,考查分析问题解决问题的能力23【答案】 【解析】解:函数f(x)的定义域为(0,+),(1)当a=2时,f(x)=x2lnx,因而f(1)=1,f(1)=1,所以曲线y=f(x)在点A(1,f(1)处的切线方程为y1=(x1),即x+y2=0(2)由,x0知:当a0时,f(x)0,函数f(x)为(0,+)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 达标测试人教版9年级数学上册《圆》达标测试试题(详解版)
- 水泵供水工程施工方案
- 2026届山东省聊城阳谷县联考化学九上期中预测试题含解析
- 培训学校母亲节
- 2026届湖南省娄底市娄星区英语九上期末教学质量检测模拟试题含解析
- 足球培训机构合作
- 2026届北京市海淀中学化学九年级第一学期期末达标检测试题含解析
- 北京延庆县联考2026届英语九年级第一学期期末监测模拟试题含解析
- 2026届重庆市南开中学化学九上期中考试模拟试题含解析
- 湖北省武汉市楚才中学2024-2025学年八年级上学期10月月考物理试题(无答案)
- 贵州贵州贵安发展集团有限公司招聘考试真题2024
- 跨境人民币合同协议
- 三方散伙协议合同协议
- 产程中饮食管理
- 小学生语言文明教育课件
- 出科考核规范
- 日结工资合同(2025年版)
- 免疫定性实验性能验证
- 在线网课学习课堂《人工智能(北理 )》单元测试考核答案
- 第24课《古诗词五首:十五从军征 》课件 2024-2025年统编版语文九年级下册
- 设备质量检测报告模板
评论
0/150
提交评论