




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
振兴区高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 在直三棱柱中,ACB=90,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为( )ABCD2 在ABC中,角A,B,C所对的边分别为a,b,c,若(acosB+bcosA)=2csinC,a+b=8,且ABC的面积的最大值为4,则此时ABC的形状为( )A等腰三角形B正三角形C直角三角形D钝角三角形3 下列函数中,既是偶函数又在单调递增的函数是( )A B C D4 已知数列an满足log3an+1=log3an+1(nN*),且a2+a4+a6=9,则log(a5+a7+a9)的值是( )AB5C5D5 以下四个命题中,真命题的是( )A,B“对任意的,”的否定是“存在,C,函数都不是偶函数D中,“”是“”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力6 已知函数(),若数列满足,数列的前项和为,则( )A. B. C. D.【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力.7 执行右面的程序框图,如果输入的,则输出的属于( ) A. B. C. D.【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用8 设双曲线焦点在y轴上,两条渐近线为,则该双曲线离心率e=( )A5BCD9 若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是( )A(0,+)B(0,2)C(1,+)D(0,1)10某几何体的三视图如图所示,则该几何体为( )A四棱柱 B四棱锥 C三棱台 D三棱柱 11若定义在R上的函数f(x)满足:对任意x1,x2R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是( )Af(x)为奇函数Bf(x)为偶函数Cf(x)+1为奇函数Df(x)+1为偶函数12设函数f(x)在x0处可导,则等于( )Af(x0)Bf(x0)Cf(x0)Df(x0)二、填空题13命题“,”的否定是 14设函数f(x)=,则f(f(2)的值为15设实数x,y满足,向量=(2xy,m),=(1,1)若,则实数m的最大值为16已知直线l的参数方程是(t为参数),曲线C的极坐标方程是=8cos+6sin,则曲线C上到直线l的距离为4的点个数有个17若“xa”是“x22x30”的充分不必要条件,则a的取值范围为18已知双曲线的标准方程为,则该双曲线的焦点坐标为,渐近线方程为三、解答题19已知函数f(x)=log2(x3),(1)求f(51)f(6)的值;(2)若f(x)0,求x的取值范围20已知椭圆C的中心在坐标原点O,长轴在x轴上,离心率为,且椭圆C上一点到两个焦点的距离之和为4()椭圆C的标准方程()已知P、Q是椭圆C上的两点,若OPOQ,求证:为定值()当为()所求定值时,试探究OPOQ是否成立?并说明理由 21【南师附中2017届高三模拟一】已知是正实数,设函数.(1)设 ,求 的单调区间;(2)若存在,使且成立,求的取值范围.22已知和均为给定的大于1的自然数,设集合,.,集合.。,.,.(1)当,时,用列举法表示集合;(2)设、,.。,.。,其中、,.,.证明:若,则.23已知梯形ABCD中,ABCD,B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体()求几何体的表面积()判断在圆A上是否存在点M,使二面角MBCD的大小为45,且CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由24已知函数f(x)=(ax2+x1)ex,其中e是自然对数的底数,aR()若a=0,求曲线f(x)在点(1,f(1)处的切线方程;()若,求f(x)的单调区间;()若a=1,函数f(x)的图象与函数的图象仅有1个公共点,求实数m的取值范围 振兴区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:双曲线(a0,b0)的渐近线方程为y=x联立方程组,解得A(,),B(,),设直线x=与x轴交于点DF为双曲线的右焦点,F(C,0)ABF为钝角三角形,且AF=BF,AFB90,AFD45,即DFDAc,ba,c2a2a2c22a2,e22,e又e1离心率的取值范围是1e故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式2 【答案】A【解析】解:(acosB+bcosA)=2csinC,(sinAcosB+sinBcosA)=2sin2C,sinC=2sin2C,且sinC0,sinC=,a+b=8,可得:82,解得:ab16,(当且仅当a=b=4成立)ABC的面积的最大值SABC=absinC=4,a=b=4,则此时ABC的形状为等腰三角形故选:A3 【答案】C【解析】试题分析:函数为奇函数,不合题意;函数是偶函数,但是在区间上单调递减,不合题意;函数为非奇非偶函数。故选C。考点:1.函数的单调性;2.函数的奇偶性。4 【答案】B【解析】解:数列an满足log3an+1=log3an+1(nN*),an+1=3an0,数列an是等比数列,公比q=3又a2+a4+a6=9,=a5+a7+a9=339=35,则log(a5+a7+a9)=5故选;B5 【答案】D6 【答案】A. 【解析】7 【答案】B8 【答案】C【解析】解:双曲线焦点在y轴上,故两条渐近线为 y=x,又已知渐近线为, =,b=2a,故双曲线离心率e=,故选C【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键9 【答案】D【解析】解:方程x2+ky2=2,即表示焦点在y轴上的椭圆故0k1故选D【点评】本题主要考查了椭圆的定义,属基础题10【答案】【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A.考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹.11【答案】C【解析】解:对任意x1,x2R有f(x1+x2)=f(x1)+f(x2)+1,令x1=x2=0,得f(0)=1令x1=x,x2=x,得f(0)=f(x)+f(x)+1,f(x)+1=f(x)1=f(x)+1,f(x)+1为奇函数故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答12【答案】C【解析】解: =f(x0),故选C二、填空题13【答案】,【解析】试题分析:“,”的否定是,考点:命题否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;对原命题的结论进行否定.(2)判定全称命题“xM,p(x)”是真命题,需要对集合M中的每个元素x,证明p(x)成立;要判定一个全称命题是假命题,只要举出集合M中的一个特殊值x0,使p(x0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个xx0,使p(x0)成立即可,否则就是假命题.14【答案】4 【解析】解:函数f(x)=,f(2)=42=,f(f(2)=f()=4故答案为:415【答案】6 【解析】解: =(2xy,m),=(1,1)若,2xy+m=0,即y=2x+m,作出不等式组对应的平面区域如图:平移直线y=2x+m,由图象可知当直线y=2x+m经过点C时,y=2x+m的截距最大,此时z最大由,解得,代入2xy+m=0得m=6即m的最大值为6故答案为:6【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值根据向量平行的坐标公式是解决本题的关键16【答案】2 【解析】解:由,消去t得:2xy+5=0,由=8cos+6sin,得2=8cos+6sin,即x2+y2=8x+6y,化为标准式得(x4)2+(y3)2=25,即C是以(4,3)为圆心,5为半径的圆又圆心到直线l的距离是,故曲线C上到直线l的距离为4的点有2个,故答案为:2【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题17【答案】a1 【解析】解:由x22x30得x3或x1,若“xa”是“x22x30”的充分不必要条件,则a1,故答案为:a1【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键18【答案】(,0) y=2x 【解析】解:双曲线的a=2,b=4,c=2,可得焦点的坐标为(,0),渐近线方程为y=x,即为y=2x故答案为:(,0),y=2x【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题三、解答题19【答案】 【解析】解:(1)函数f(x)=log2(x3),f(51)f(6)=log248log23=log216=4;(2)若f(x)0,则0x31,解得:x(3,4【点评】本题考查的知识点是对数函数的图象和性质,对数的运算性质,解答时要时时注意真数大于0,以免出错20【答案】 【解析】(I)解:由题意可设椭圆的坐标方程为(ab0)离心率为,且椭圆C上一点到两个焦点的距离之和为4,2a=4,解得a=2,c=1b2=a2c2=3椭圆C的标准方程为(II)证明:当OP与OQ的斜率都存在时,设直线OP的方程为y=kx(k0),则直线OQ的方程为y=x(k0),P(x,y)联立,化为,|OP|2=x2+y2=,同理可得|OQ|2=,=+=为定值当直线OP或OQ的斜率一个为0而另一个不存在时,上式也成立因此=为定值(III)当=定值时,试探究OPOQ是否成立?并说明理由OPOQ不一定成立下面给出证明证明:当直线OP或OQ的斜率一个为0而另一个不存在时,则=,满足条件当直线OP或OQ的斜率都存在时,设直线OP的方程为y=kx(k0),则直线OQ的方程为y=kx(kk,k0),P(x,y)联立,化为,|OP|2=x2+y2=,同理可得|OQ|2=,=+=化为(kk)2=1,kk=1OPOQ或kk=1因此OPOQ不一定成立【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、相互垂直的直线斜率之间的关系,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题21【答案】(1)在上单调递减,在上单调递增.(2)【解析】【试题分析】(1)先对函数求导得,再解不等式得求出单调增区间;解不等式得求出单调减区间;(2)先依据题设得,由(1)知,然后分、三种情形,分别研究函数的最小值,然后建立不等式进行分类讨论进行求解出其取值范围:解:(1),由得,在上单调递减,在上单调递增.(2)由得,由条件得. 当,即时,由得.当时,在上单调递增,矛盾,不成立.由得.当,即时,在上单调递减,当时恒成立,综上所述,.22【答案】【解析】23【答案】 【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=422=8,或S=42+(422)+2=8;(2)作MEAC,EFBC,连结FM,易证FMBC,MFE为二面角MBCD的平面角,设CAM=,EM=2sin,EF=,tanMFE=1,tan=,CM=2【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目24【答案】 【解析】解:()a=0,f(x)=(x1)ex,f(x)=ex+(x1)ex=xex,曲线f(x)在点(1,f(1)处的切线斜率为k=f(1)=e又f(1)=0,所求切线方程为y=e(x1),即exy4=0()f(x)=(2ax+1)ex+(ax2+x1)ex=ax2+(2a+1)xex=x(ax+2a+1)ex,若a=,f(x)=x2ex0,f(x)的单调递减区间为(,+),若a,当x或x0时,f(x)0;当x0时,f(x)0f(x)的单调递减区间为(,0,+);单调递增区间为,0()当a=1时,由()知,f(x)=(x2+x1)ex在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 张家口市中石化2025秋招面试半结构化模拟题及答案电气仪控技术岗
- 大唐电力通辽市2025秋招性格测评常考题型与答题技巧
- 2025年潜水科目考试题及答案
- 石嘴山市中石油2025秋招笔试模拟题含答案行测综合英语
- 七台河市中石油2025秋招网申填写模板含开放题范文
- 中国移动汉中市2025秋招半结构化面试模拟30问及答案
- 黄冈市中石化2025秋招面试半结构化模拟题及答案油田勘探开发岗
- 那曲市中石油2025秋招面试半结构化模拟题及答案油气储运与管道岗
- 岳阳市中石化2025秋招面试半结构化模拟题及答案炼化装置操作岗
- 上饶市中石化2025秋招面试半结构化模拟题及答案炼油工艺技术岗
- 食材配送服务方案投标方案(技术方案)
- JT-T-1180.2-2018交通运输企业安全生产标准化建设基本规范第2部分:道路旅客运输企业
- 中国省市县行政区划
- 快手磁力聚星星选达人认证考试试卷答案
- 一元二次方程-相似三角形-锐角三角函数复习
- 冰皮月饼的制作方法课件
- 在职党员到社区报到登记表“双报到”登记表
- 降低10炉脱硝系统液氨消耗量0
- 地下储藏室产权使用权转让协议
- 高考专题复习:小说专题训练人称的交替使用
- 大数据在高速公路收费稽查打逃方面的应用
评论
0/150
提交评论