




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷宁都县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 “”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.2 若函数则函数的零点个数为( )A1 B2 C3 D43 设集合A=x|x2|2,xR,B=y|y=x2,1x2,则R(AB)等于( )ARBx|xR,x0C0D4 在数列中,则该数列中相邻两项的乘积为负数的项是( )A和 B和 C和 D和5 已知x,y满足,且目标函数z=2x+y的最小值为1,则实数a的值是( )A1BCD6 求值: =( )Atan 38BCD7 函数f(x)=2x的零点个数为( )A0B1C2D38 已知集合M=0,1,2,则下列关系式正确的是( )A0MB0MC0MD0M9 如图,棱长为1的正方体ABCDA1B1C1D1中,M为线段A1B上的动点,则下列结论正确的有( )三棱锥MDCC1的体积为定值 DC1D1MAMD1的最大值为90 AM+MD1的最小值为2ABCD10“x0”是“x0”是的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件11定义在(0,+)上的函数f(x)满足:0,且f(2)=4,则不等式f(x)0的解集为( )A(2,+)B(0,2)C(0,4)D(4,+)12给出以下四个说法:绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;线性回归直线一定经过样本中心点,;设随机变量服从正态分布N(1,32)则p(1)=;对分类变量X与Y它们的随机变量K2的观测值k越大,则判断“与X与Y有关系”的把握程度越小其中正确的说法的个数是( )A1B2C3D4二、填空题13一船以每小时12海里的速度向东航行,在A处看到一个灯塔B在北偏东60,行驶4小时后,到达C处,看到这个灯塔B在北偏东15,这时船与灯塔相距为海里14如图所示,正方体ABCDABCD的棱长为1,E、F分别是棱AA,CC的中点,过直线EF的平面分别与棱BB、DD交于M、N,设BM=x,x0,1,给出以下四个命题:平面MENF平面BDDB;当且仅当x=时,四边形MENF的面积最小;四边形MENF周长l=f(x),x0,1是单调函数;四棱锥CMENF的体积v=h(x)为常函数;以上命题中真命题的序号为15已知命题p:xR,x2+2x+a0,若命题p是假命题,则实数a的取值范围是(用区间表示)16已知是数列的前项和,若不等式对一切恒成立,则的取值范围是_【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力17在极坐标系中,O是极点,设点A,B的极坐标分别是(2,),(3,),则O点到直线AB的距离是18的展开式中的系数为 (用数字作答)三、解答题19(本题12分)已知数列的首项,通项(,为常数),且成等差数列,求:(1)的值;(2)数列前项和的公式.20已知2x2,2y2,点P的坐标为(x,y)(1)求当x,yZ时,点P满足(x2)2+(y2)24的概率;(2)求当x,yR时,点P满足(x2)2+(y2)24的概率21某运动员射击一次所得环数X的分布如下:X0678910P00.20.30.30.2现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为(I)求该运动员两次都命中7环的概率;()求的数学期望E22巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+clnx(abc0)()证明:当a0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;()在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f(x0),则称其为“K函数”判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+clnx是否为“K函数”?并证明你的结论 23某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?24如图,在三棱柱中,(1)求证:平面;(2)若,求三棱锥的体积宁都县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】因为在上单调递增,且,所以,即.反之,当时,(),不能保证,所以“”是“”的充分不必要条件,故选A.2 【答案】D【解析】 考点:函数的零点【易错点睛】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几个零点(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点. 3 【答案】B【解析】解:A=0,4,B=4,0,所以AB=0,R(AB)=x|xR,x0,故选B4 【答案】C【解析】考点:等差数列的通项公式5 【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=2x+z,由图可知,当直线y=2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=故选:B【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题6 【答案】C【解析】解: =tan(49+11)=tan60=,故选:C【点评】本题主要考查两角和的正切公式的应用,属于基础题7 【答案】C【解析】解:易知函数的定义域为x|x1,0,函数在(,1)和(1,+)上都是增函数,又0,f(0)=1(2)=30,故函数在区间(4,0)上有一零点;又f(2)=44=0,函数在(1,+)上有一零点0,综上可得函数有两个零点故选:C【点评】本题考查函数零点的判断解题关键是掌握函数零点的判断方法利用函数单调性确定在相应区间的零点的唯一性属于中档题8 【答案】C【解析】解:对于A、B,是两个集合的关系,不能用元素与集合的关系表示,所以不正确;对于C,0是集合中的一个元素,表述正确对于D,是元素与集合的关系,错用集合的关系,所以不正确故选C【点评】本题考查运算与集合的关系,集合与集合的关系,考查基本知识的应用9 【答案】A【解析】解:A1B平面DCC1D1,线段A1B上的点M到平面DCC1D1的距离都为1,又DCC1的面积为定值,因此三棱锥MDCC1的体积V=为定值,故正确A1D1DC1,A1BDC1,DC1面A1BCD1,D1P面A1BCD1,DC1D1P,故正确当0A1P时,在AD1M中,利用余弦定理可得APD1为钝角,故不正确;将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,在D1A1A中,D1A1A=135,利用余弦定理解三角形得AD1=2,故不正确因此只有正确故选:A10【答案】B【解析】解:当x=1时,满足x0,但x0不成立当x0时,一定有x0成立,“x0”是“x0”是的必要不充分条件故选:B11【答案】B【解析】解:定义在(0,+)上的函数f(x)满足:0f(2)=4,则2f(2)=8,f(x)0化简得,当x2时,成立故得x2,定义在(0,+)上不等式f(x)0的解集为(0,2)故选B【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解属于中档题12【答案】B【解析】解:绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故错;线性回归直线一定经过样本中心点(,),故正确;设随机变量服从正态分布N(1,32)则p(1)=,正确;对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,故不正确故选:B【点评】本题考查统计的基础知识:频率分布直方图和线性回归及分类变量X,Y的关系,属于基础题二、填空题13【答案】24 【解析】解:根据题意,可得出B=7530=45,在ABC中,根据正弦定理得:BC=24海里,则这时船与灯塔的距离为24海里故答案为:2414【答案】 【解析】解:连结BD,BD,则由正方体的性质可知,EF平面BDDB,所以平面MENF平面BDDB,所以正确连结MN,因为EF平面BDDB,所以EFMN,四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF的面积最小所以正确因为EFMN,所以四边形MENF是菱形当x0,时,EM的长度由大变小当x,1时,EM的长度由小变大所以函数L=f(x)不单调所以错误连结CE,CM,CN,则四棱锥则分割为两个小三棱锥,它们以CEF为底,以M,N分别为顶点的两个小棱锥因为三角形CEF的面积是个常数M,N到平面CEF的距离是个常数,所以四棱锥CMENF的体积V=h(x)为常函数,所以正确故答案为:【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高15【答案】(1,+) 【解析】解:命题p:xR,x2+2x+a0,当命题p是假命题时,命题p:xR,x2+2x+a0是真命题;即=44a0,a1;实数a的取值范围是(1,+)故答案为:(1,+)【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目16【答案】【解析】由,两式相减,得,所以,于是由不等式对一切恒成立,得,解得17【答案】 【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(,),故AB的斜率为,故直线AB的方程为 y=(x3),即x+3y12=0,所以O点到直线AB的距离是=,故答案为:【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题18【答案】20【解析】【知识点】二项式定理与性质【试题解析】通项公式为:令12-3r=3,r=3所以系数为:故答案为:三、解答题19【答案】(1);(2).考点:等差,等比数列通项公式,数列求和.20【答案】 【解析】解:如图,点P所在的区域为长方形ABCD的内部(含边界),满足(x2)2+(y2)24的点的区域为以(2,2)为圆心,2为半径的圆面(含边界)(1)当x,yZ时,满足2x2,2y2的点有25个,满足x,yZ,且(x2)2+(y2)24的点有6个,依次为(2,0)、(2,1)、(2,2)、(1,1)、(1,2)、(0,2);所求的概率P=(2)当x,yR时,满足2x2,2y2的面积为:44=16,满足(x2)2+(y2)24,且2x2,2y2的面积为: =,所求的概率P=【点评】本题考查的知识点是几何概型概率计算公式,计算出满足条件和所有基本事件对应的几何量,是解答的关键,难度中档21【答案】 【解析】解:(1)设A=“该运动员两次都命中7环”,则P(A)=0.20.2=0.04(2)依题意在可能取值为:7、8、9、10且P(=7)=0.04,P(=8)=20.20.3+0.32=0.21,P(=9)=20.20.3+20.30.30.32=0.39,P(=10)=20.20.2+20.30.2+20.30.2+0.22=0.36,的分布列为:78910P0.040.210.390.36的期望为E=70.04+80.21+90.39+100.36=9.07【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用22【答案】 【解析】解:()证明:如果g(x)是定义域(0,+)上的增函数,则有g(x)=2ax+b+=0;从而有2ax2+bx+c0对任意x(0,+)恒成立;又a0,则结合二次函数的图象可得,2ax2+bx+c0对任意x(0,+)恒成立不可能,故当a0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;()函数f(x)=ax2+bx+c是“K函数”,g(x)=ax2+bx+clnx不是“K函数”,事实上,对于二次函数f(x)=ax2+bx+c,k=a(x1+x2)+b=2ax0+b;又f(x0)=2ax0+b,故k=f(x0);故函数f(x)=ax2+bx+c是“K函数”;对于函数g(x)=ax2+bx+clnx,不妨设0x1x2,则k=2ax0+b+;而g(x0)=2ax0+b+;故=,化简可得,=;设t=,则0t1,lnt=;设s(t)=lnt;则s(t)=0;则s(t)=lnt是(0,1)上的增函数,故s(t)s(1)=0;则lnt;故g(x)=ax2+bx+clnx不是“K函数”【点评】本题考查了导数的综合应用及学生对新定义的接受能力,属于中档题23【答案】【解析】(1)f(t)=10=102sin(t+),t0,24),t+,故当t+=时,函数取得最大值为10+2=12,当t+=时,函数取得最小值为10
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学习解读庆祝2022年国庆节专题
- 甲烷安全知识培训内容课件
- 农村电商教学课件
- 用电用网安全知识培训课件
- 《出师表》教学课件
- 《设计加法器》教学课件
- 中国旅游教学课件
- 新解读《GB-T 18916.33-2018取水定额 第33部分:煤间接液化》
- 生鲜类行业知识培训课件
- 生美基础知识培训总结课件
- 石膏深加工产品项目可行性研究报告(年产2万吨α石膏粉及20万吨高性能β石膏粉生产线项目)
- 板底加钢梁加固方案
- 全球及中国通用闪存存储(UFS)市场、份额、市场规模、趋势、行业分析报告2024-2030年
- 年产 2.5 万吨橡胶促进剂 CBS、1.7 万吨橡胶促进剂 TBBS 及 1.5 万吨橡胶促进剂 M 项目环评可研资料环境影响
- 第7章 显微镜下常见矿物特征
- 职业技能鉴定国家题库钳工中级理论知识试卷及其答案
- 预约登记表格模板
- 船舶公司劳动人事管理制度
- 癌痛三阶梯治疗及阿片类镇痛药的合理使用
- 特斯拉更换电池标准
- 2023年贵州省注册会计师协会(贵州省资产评估协会)招考聘用笔试参考题库含答案解析
评论
0/150
提交评论