




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷泉州市第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 在等比数列中,前项和为,若数列也是等比数列,则等于( )ABCD2 设实数,则a、b、c的大小关系为( )AacbBcbaCbacDabc3 下列函数中,为奇函数的是( )Ay=x+1By=x2Cy=2xDy=x|x|4 如图,棱长为1的正方体ABCDA1B1C1D1中,M为线段A1B上的动点,则下列结论正确的有( )三棱锥MDCC1的体积为定值 DC1D1MAMD1的最大值为90 AM+MD1的最小值为2ABCD5 复数i1(i是虚数单位)的虚部是( )A1B1CiDi6 设Sn为等差数列an的前n项和,已知在Sn中有S170,S180,那么Sn中最小的是( )AS10BS9CS8DS77 某几何体的三视图如图所示,则它的表面积为( )ABCD8 线段AB在平面内,则直线AB与平面的位置关系是( )AABBABC由线段AB的长短而定D以上都不对9 算数书竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式VL2h,它实际上是将圆锥体积公式中的圆周率近似取为3,那么,近似公式VL2h相当于将圆锥体积公式中的近似取为( )ABCD10已知 m、n 是两条不重合的直线,、是三个互不重合的平面,则下列命题中 正确的是( )A若 m,n,则 mnB若,则 C若m,n,则 mnD若 m,m,则 11sin(510)=( )ABCD12直线x+y1=0与2x+2y+3=0的距离是( )ABCD二、填空题13已知sin+cos=,且,则sincos的值为14如图,在平面直角坐标系xOy中,将直线y=与直线x=1及x轴所围成的图形旋转一周得到一个圆锥,圆锥的体积V圆锥=()2dx=x3|=据此类推:将曲线y=x2与直线y=4所围成的图形绕y轴旋转一周得到一个旋转体,该旋转体的体积V=15已知集合M=x|x|2,xR,N=xR|(x3)lnx2=0,那么MN=16已知是数列的前项和,若不等式对一切恒成立,则的取值范围是_【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力17长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是18若命题“xR,x22x+m0”是假命题,则m的取值范围是三、解答题19在长方体ABCDA1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点()证明:ACD1E;()求DE与平面AD1E所成角的正弦值;()在棱AD上是否存在一点P,使得BP平面AD1E?若存在,求DP的长;若不存在,说明理由20若已知,求sinx的值21已知集合A=x|1,xR,B=x|x22xm0()当m=3时,求;A(RB);()若AB=x|1x4,求实数m的值22(本小题满分10分)选修4-1:几何证明选讲1111如图,点为圆上一点,为圆的切线,为圆的直径,.(1)若交圆于点,求的长;(2)若连接并延长交圆于两点,于,求的长.23设函数f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12(1)求a,b的值(2)当x1,2时,求f(x)的最大值(3)m为何值时,函数g(x)=ax的图象与h(x)=bxm的图象恒有两个交点 24A=x|x23x+2=0,B=x|ax2=0,若BA,求a泉州市第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】设的公比为,则,因为也是等比数列,所以,即,所以因为,所以,即,所以,故选D答案:D 2 【答案】A【解析】解:,b=20.120=1,00.90=1acb故选:A3 【答案】D【解析】解:由于y=x+1为非奇非偶函数,故排除A;由于y=x2为偶函数,故排除B;由于y=2x为非奇非偶函数,故排除C;由于y=x|x|是奇函数,满足条件,故选:D【点评】本题主要考查函数的奇偶性的判断,属于基础题4 【答案】A【解析】解:A1B平面DCC1D1,线段A1B上的点M到平面DCC1D1的距离都为1,又DCC1的面积为定值,因此三棱锥MDCC1的体积V=为定值,故正确A1D1DC1,A1BDC1,DC1面A1BCD1,D1P面A1BCD1,DC1D1P,故正确当0A1P时,在AD1M中,利用余弦定理可得APD1为钝角,故不正确;将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,在D1A1A中,D1A1A=135,利用余弦定理解三角形得AD1=2,故不正确因此只有正确故选:A5 【答案】A【解析】解:由复数虚部的定义知,i1的虚部是1,故选A【点评】该题考查复数的基本概念,属基础题6 【答案】C【解析】解:S160,S170,=8(a8+a9)0,=17a90,a80,a90,公差d0Sn中最小的是S8故选:C【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题7 【答案】 A【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,母线长为,圆锥的表面积S=S底面+S侧面=12+22+=2+故选A【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量8 【答案】A【解析】解:线段AB在平面内,直线AB上所有的点都在平面内,直线AB与平面的位置关系:直线在平面内,用符号表示为:AB故选A【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力公理一:如果一条线上的两个点在平面上则该线在平面上9 【答案】B【解析】解:设圆锥底面圆的半径为r,高为h,则L=2r,=(2r)2h,=故选:B10【答案】C【解析】解:对于A,若 m,n,则 m与n相交、平行或者异面;故A错误;对于B,若,则 与可能相交,如墙角;故B错误;对于C,若m,n,根据线面垂直的性质定理得到 mn;故C正确;对于D,若 m,m,则 与可能相交;故D错误;故选C【点评】本题考查了空间线线关系面面关系的判断;熟练的运用相关的定理是关键11【答案】C【解析】解:sin(510)=sin(150)=sin150=sin30=,故选:C12【答案】A【解析】解:直线x+y1=0与2x+2y+3=0的距离,就是直线2x+2y2=0与2x+2y+3=0的距离是: =故选:A二、填空题13【答案】 【解析】解:sin+cos=,sin2+2sincos+cos2=,2sincos=1=,且sincos,sincos=故答案为:14【答案】8 【解析】解:由题意旋转体的体积V=8,故答案为:8【点评】本题给出曲线y=x2与直线y=4所围成的平面图形,求该图形绕xy轴转一周得到旋转体的体积着重考查了利用定积分公式计算由曲边图形旋转而成的几何体体积的知识,属于基础题15【答案】1,1 【解析】解:合M=x|x|2,xR=x|2x2,N=xR|(x3)lnx2=0=3,1,1,则MN=1,1,故答案为:1,1,【点评】本题主要考查集合的基本运算,比较基础16【答案】【解析】由,两式相减,得,所以,于是由不等式对一切恒成立,得,解得17【答案】50 【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是: =50故答案为:50【点评】本题是基础题,考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力18【答案】m1 【解析】解:若命题“xR,x22x+m0”是假命题,则命题“xR,x22x+m0”是真命题,即判别式=44m0,解得m1,故答案为:m1三、解答题19【答案】 【解析】()证明:连接BDABCDA1B1C1D1是长方体,D1D平面ABCD,又AC平面ABCD,D1DAC1分在长方形ABCD中,AB=BC,BDAC2分又BDD1D=D,AC平面BB1D1D,3分而D1E平面BB1D1D,ACD1E4分()解:如图建立空间直角坐标系Dxyz,则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0),5分设平面AD1E的法向量为,则,即令z=1,则7分 8分DE与平面AD1E所成角的正弦值为9分()解:假设在棱AD上存在一点P,使得BP平面AD1E设P的坐标为(t,0,0)(0t1),则BP平面AD1E,即,2(t1)+1=0,解得,12分在棱AD上存在一点P,使得BP平面AD1E,此时DP的长13分20【答案】 【解析】解:,2,sin()=sinx=sin(x+)=sin()coscos()sin=【点评】本题考查了两角和差的余弦函数公式,属于基础题21【答案】 【解析】解:(1)当m=3时,由x22x301x3,由11x5,AB=x|1x3;(2)若AB=x|1x4,A=(1,5),4是方程x22xm=0的一个根,m=8,此时B=(2,4),满足AB=(1,4)m=822【答案】(1);(2).【解析】试题分析:(1)由切线的性质可知,由相似三角形性质知,可得;(2)由切割线定理可得,求出,再由,求出的值. 1试题解析:(1)因为是圆的切线,是圆的直径,所以,所以,设,又因为,所以,所以,解得.考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质.23【答案】 【解析】解:(1)f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12,ab=2,a2b2=12,解得:a=4,b=2;(2)由(1)得:函数f(x)=lg(4x2x),当x1,2时,4x2x2,12,故当x=2时,函数f(x)取最大值l
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江西吉安市青原区司法局招聘2人考试备考试题及答案解析
- 2025甘肃中铁西北科学研究院有限公司评估中心招聘考试备考试题及答案解析
- 2025年康复医疗服务体系与康复医疗设备产业协同发展报告
- 2025年数控机床智能化升级技术路径与产业变革报告
- 2025年消费金融用户画像精准营销策略与行业动态报告
- 合肥市二手房市场价格的多维度解析与影响因素探究
- 合成孔径雷达快速时域成像算法:原理、优化与应用探索
- 合作学习:开启高中生物教学的新征程
- 2025年足彩胜负彩过滤服务协议书范本3篇
- 教师招聘之《幼儿教师招聘》能力检测试卷附答案详解(黄金题型)
- Unit2-The-fun-they-had市公开课一等奖省赛课微课金奖课件
- 2024年河北省石家庄市轨道交通有限责任公司招聘笔试参考题库含答案解析
- 110kV变电站及110kV输电线路运维投标技术方案(第一部分)
- 项目时间安排
- 智慧生态茶园技术方案
- 常用食物含铜量表-献给有需要的人
- 健身教练增肌减脂知识讲座
- 《踝关节康复训练》课件
- 进修汇报材料课件
- (初级)游泳救生员理论考试题库(新版)
- 名校教学设计:综合与实践-哪个城市夏天更热2
评论
0/150
提交评论