




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷海拉尔区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 如图,AB是半圆O的直径,AB2,点P从A点沿半圆弧运动至B点,设AOPx,将动点P到A,B两点的距离之和表示为x的函数f(x),则yf(x)的图象大致为( )2 设公差不为零的等差数列的前项和为,若,则( ) A B C7 D14【命题意图】本题考查等差数列的通项公式及其前项和,意在考查运算求解能力.3 已知命题和命题,若为真命题,则下面结论正确的是( )A是真命题 B是真命题 C是真命题 D是真命题4 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A3BC2D65 已知幂函数y=f(x)的图象过点(,),则f(2)的值为( )ABC2D26 已知命题p:对任意xR,总有3x0;命题q:“x2”是“x4”的充分不必要条件,则下列命题为真命题的是( )ApqBpqCpqDpq7 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )ABCD8 已知圆C1:x2+y2=4和圆C2:x2+y2+4x4y+4=0关于直线l对称,则直线l的方程为()Ax+y=0Bx+y=2Cxy=2Dxy=29 方程(x24)2+(y24)2=0表示的图形是( )A两个点B四个点C两条直线D四条直线10已知点M的球坐标为(1,),则它的直角坐标为( )A(1,)B(,)C(,)D(,)11设集合A=x|2x4,B=2,1,2,4,则AB=( )A1,2B1,4C1,2D2,412设P是椭圆+=1上一点,F1、F2是椭圆的焦点,若|PF1|等于4,则|PF2|等于( )A22B21C20D13二、填空题13定义在R上的偶函数f(x)在0,+)上是增函数,且f(2)=0,则不等式f(log8x)0的解集是14已知关于的不等式的解集为,则关于的不等式的解集为_.15设函数,其中x表示不超过x的最大整数若方程f(x)=ax有三个不同的实数根,则实数a的取值范围是16【常熟中学2018届高三10月阶段性抽测(一)】函数的单调递减区间为_.17椭圆C: +=1(ab0)的右焦点为(2,0),且点(2,3)在椭圆上,则椭圆的短轴长为18已知函数f(x)=,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是三、解答题19如图,四面体ABCD中,平面ABC平面BCD,AC=AB,CB=CD,DCB=120,点E在BD上,且CE=DE()求证:ABCE;()若AC=CE,求二面角ACDB的余弦值20提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20x200时,车流速度v是车流密度x的一次函数()当0x200时,求函数v(x)的表达式;()当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值(精确到1辆/小时) 21已知函数f(x)=sinxcosxcos2x+(0)经化简后利用“五点法”画其在某一个周期内的图象时,列表并填入的部分数据如下表:xf(x)01010()请直接写出处应填的值,并求函数f(x)在区间,上的值域;()ABC的内角A,B,C所对的边分别为a,b,c,已知f(A+)=1,b+c=4,a=,求ABC的面积22武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者现从符合条件的志愿者中随机抽取100名按年龄分组:第1组20,25),第2组25,30),第3组30,35),第4组35,40),第5组40,45,得到的频率分布直方图如图所示(1)分别求第3,4,5组的频率;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率23已知函数f(x)=lg(2016+x),g(x)=lg(2016x)(1)判断函数f(x)g(x)的奇偶性,并予以证明(2)求使f(x)g(x)0成立x的集合24已知二次函数f(x)=x2+bx+c,其中常数b,cR()若任意的x1,1,f(x)0,f(2+x)0,试求实数c的取值范围;()若对任意的x1,x21,1,有|f(x1)f(x2)|4,试求实数b的取值范围海拉尔区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】【解析】选B.取AP的中点M,则PA2AM2OAsinAOM2sin ,PB2OM2OAcosAOM2cos,yf(x)PAPB2sin2cos2sin(),x0,根据解析式可知,只有B选项符合要求,故选B.2 【答案】C.【解析】根据等差数列的性质,化简得,故选C.3 【答案】C【解析】111.Com试题分析:由为真命题得都是真命题所以是假命题;是假命题;是真命题;是假命题故选C.考点:命题真假判断4 【答案】C【解析】解:椭圆的半焦距为2,离心率e=,c=2,a=3,b=2b=2故选:C【点评】本题主要考查了椭圆的简单性质属基础题5 【答案】A【解析】解:设幂函数y=f(x)=x,把点(,)代入可得=,=,即f(x)=,故f(2)=,故选:A6 【答案】D【解析】解:p:根据指数函数的性质可知,对任意xR,总有3x0成立,即p为真命题,q:“x2”是“x4”的必要不充分条件,即q为假命题,则pq为真命题,故选:D【点评】本题主要考查复合命题的真假关系的应用,先判定p,q的真假是解决本题的关键,比较基础7 【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有46=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题8 【答案】D【解析】【分析】由题意可得圆心C1和圆心C2,设直线l方程为y=kx+b,由对称性可得k和b的方程组,解方程组可得【解答】解:由题意可得圆C1圆心为(0,0),圆C2的圆心为(2,2),圆C1:x2+y2=4和圆C2:x2+y2+4x4y+4=0关于直线l对称,点(0,0)与(2,2)关于直线l对称,设直线l方程为y=kx+b,k=1且=k+b,解得k=1,b=2,故直线方程为xy=2,故选:D9 【答案】B【解析】解:方程(x24)2+(y24)2=0则x24=0并且y24=0,即,解得:,得到4个点故选:B【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力10【答案】B【解析】解:设点M的直角坐标为(x,y,z),点M的球坐标为(1,),x=sincos=,y=sinsin=,z=cos=M的直角坐标为(,)故选:B【点评】假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,来确定,其中r为原点O与点P间的距离,为有向线段OP与z轴正向的夹角,为从正z轴来看自x轴按逆时针方向转到OM所转过的角,这里M为点P在xOy面上的投影这样的三个数r,叫做点P的球面坐标,显然,这里r,的变化范围为r0,+),0,2,0,11【答案】A【解析】解:集合A=x|2x4,B=2,1,2,4,则AB=1,2故选:A【点评】本题考查交集的运算法则的应用,是基础题12【答案】A【解析】解:P是椭圆+=1上一点,F1、F2是椭圆的焦点,|PF1|等于4,|PF2|=213|PF1|=264=22故选:A【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用二、填空题13【答案】(0,)(64,+) 【解析】解:f(x)是定义在R上的偶函数,f(log8x)0,等价为:f(|log8x|)f(2),又f(x)在0,+)上为增函数,|log8x|2,log8x2或log8x2,x64或0x即不等式的解集为x|x64或0x故答案为:(0,)(64,+)【点评】本题考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键14【答案】【解析】考点:一元二次不等式的解法.15【答案】(1,) 【解析】解:当2x1时,x=2,此时f(x)=xx=x+2当1x0时,x=1,此时f(x)=xx=x+1当0x1时,1x10,此时f(x)=f(x1)=x1+1=x当1x2时,0x11,此时f(x)=f(x1)=x1当2x3时,1x12,此时f(x)=f(x1)=x11=x2当3x4时,2x13,此时f(x)=f(x1)=x12=x3设g(x)=ax,则g(x)过定点(0,0),坐标系中作出函数y=f(x)和g(x)的图象如图:当g(x)经过点A(2,1),D(4,1)时有3个不同的交点,当经过点B(1,1),C(3,1)时,有2个不同的交点,则OA的斜率k=,OB的斜率k=1,OC的斜率k=,OD的斜率k=,故满足条件的斜率k的取值范围是或,故答案为:(1,)【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想16【答案】【解析】17【答案】 【解析】解:椭圆C: +=1(ab0)的右焦点为(2,0),且点(2,3)在椭圆上,可得c=2,2a=8,可得a=4,b2=a2c2=12,可得b=2,椭圆的短轴长为:4故答案为:4【点评】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力18【答案】(0,1) 【解析】解:画出函数f(x)的图象,如图示:令y=k,由图象可以读出:0k1时,y=k和f(x)有3个交点,即方程f(x)=k有三个不同的实根,故答案为(0,1)【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题三、解答题19【答案】 【解析】解:()证明:BCD中,CB=CD,BCD=120,CDB=30,EC=DE,DCE=30,BCE=90,ECBC,又平面ABC平面BCD,平面ABC与平面BCD的交线为BC,EC平面ABC,ECAB()解:取BC的中点O,BE中点F,连结OA,OF,AC=AB,AOBC,平面ABC平面BCD,平面ABC平面BCD=BC,AO平面BCD,O是BC中点,F是BE中点,OFBC,以O为原点,OB为y轴,OA为z轴,建立空间直角坐标系,设DE=2,则A(0,0,1),B(0,0),C(0,0),D(3,2,0),=(0,1),=(3,0),设平面ACD的法向量为=(x,y,z),则,取x=1,得=(1,3),又平面BCD的法向量=(0,0,1),cos=,二面角ACDB的余弦值为【点评】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用本小题对考生的空间想象能力与运算求解能力有较高要求20【答案】 【解析】解:() 由题意:当0x20时,v(x)=60;当20x200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为()依题并由()可得当0x20时,f(x)为增函数,故当x=20时,其最大值为6020=1200当20x200时,当且仅当x=200x,即x=100时,等号成立所以,当x=100时,f(x)在区间(20,200上取得最大值综上所述,当x=100时,f(x)在区间0,200上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时答:() 函数v(x)的表达式() 当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时 21【答案】 【解析】解:()处应填入=T=,即,从而得到f(x)的值域为(),又0A,得,由余弦定理得a2=b2+c22bccosA=(b+c)23bc,即,bc=3ABC的面积【点评】本小题主要考查三角函数的图象与性质、两角和与差的三角函数、解三角形等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题22【答案】 【解析】解:(1)由题意可知第3组的频率为0.065=0.3,第4组的频率为0.045=0.2,第5组的频率为0.025=0.1;(2)第3组的人数为0.3100=30,第4组的人数为0.2100=20,第5组的人数为0.1100=10;因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组=3;第4组=2;第5组=1;应从第3,4,5组各抽取3,2,1名志愿者(3)记第3组3名志愿者为1,2,3;第4组2名志愿者为4,5;第5组1名志愿者为6;在这6名志愿者中随机抽取2名志愿者有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6);共有15种,第4组2名志愿者为4,5;至少有一名志愿者被抽中共有9种,所以第4组至少有一名志愿者被抽中的概率为【点评】本题考查列举法计算基本事件数及事件发生的概率,频率分布直方图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【基于平衡记分卡的企业绩效考核研究的相关理论基础8300字】
- 2025至2030中国番泻叶甙行业产业运行态势及投资规划深度研究报告
- 2025至2030中国甜酒行业市场深度研究及发展前景投资可行性分析报告
- 2025至2030中国玩具烟花行业销售模式与发展趋势研究报告
- 医疗质量 安全培训课件
- 工伤纠纷培训课件模板
- 智慧城市安防系统中智能监控设备的选型与配置
- 医生科室课件培训总结
- 未来工作场景中的AR与VR技术探索
- 基于教育心理学的医疗培训模式创新
- 高校学科重塑路径研究
- DB12T 1444-2025 博物馆消防安全管理导则
- 硫化氢题库及答案
- 2025年房地产销售经理季度工作总结及年度计划
- 低压培训课件
- 教师团队协作与沟通能力
- 保安公司薪酬管理制度
- 井盖巡查管理制度
- GB/T 33490-2025展览展示工程服务基本要求
- 2024年国能榆林化工有限公司招聘真题
- 消防总队面试题目及答案
评论
0/150
提交评论