镇远县一中2018-2019学年上学期高二数学12月月考试题含解析_第1页
镇远县一中2018-2019学年上学期高二数学12月月考试题含解析_第2页
镇远县一中2018-2019学年上学期高二数学12月月考试题含解析_第3页
镇远县一中2018-2019学年上学期高二数学12月月考试题含解析_第4页
镇远县一中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

镇远县一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 不等式0的解集是( )A(,1)(1,2)B1,2C(,1)2,+)D(1,22 某程序框图如图所示,则输出的S的值为( )A11B19C26D573 两个随机变量x,y的取值表为x0134y2.24.34.86.7若x,y具有线性相关关系,且bx2.6,则下列四个结论错误的是( )Ax与y是正相关B当y的估计值为8.3时,x6C随机误差e的均值为0D样本点(3,4.8)的残差为0.654 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队首发要求每个班至少1人,至多2人,则首发方案数为( )A720B270C390D3005 已知两点M(1,),N(4,),给出下列曲线方程:4x+2y1=0; x2+y2=3; +y2=1; y2=1在曲线上存在点P满足|MP|=|NP|的所有曲线方程是( )ABCD6 已知,则“”是“”的( )A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.7 直线x+y1=0与2x+2y+3=0的距离是( )ABCD8 若向量=(3,m),=(2,1),则实数m的值为( )ABC2D69 已知复数z满足(3+4i)z=25,则=( )A34iB3+4iC34iD3+4i10设m是实数,若函数f(x)=|xm|x1|是定义在R上的奇函数,但不是偶函数,则下列关于函数f(x)的性质叙述正确的是( )A只有减区间没有增区间B是f(x)的增区间Cm=1D最小值为311下列命题中正确的是( )A复数a+bi与c+di相等的充要条件是a=c且b=dB任何复数都不能比较大小C若=,则z1=z2D若|z1|=|z2|,则z1=z2或z1=12天气预报说,在今后的三天中,每一天下雨的概率均为40%现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为( )A0.35B0.25C0.20D0.15二、填空题13在直三棱柱中,ACB=90,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为( )ABCD14向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为15当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的1564岁劳动人口所占比例:年份20302035204020452050年份代号t12345所占比例y6865626261根据上表,y关于t的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =16若“xa”是“x22x30”的充分不必要条件,则a的取值范围为17已知a=(cosxsinx)dx,则二项式(x2)6展开式中的常数项是18空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点若AC=BD,则四边形EFGH是;若ACBD,则四边形EFGH是三、解答题19已知函数f(x)=4sinxcosx5sin2xcos2x+3()当x0,时,求函数f(x)的值域;()若ABC的内角A,B,C的对边分别为a,b,c,且满足=, =2+2cos(A+C),求f(B)的值20在中,.(1)求的值;(2)求的值。21(本小题满分12分)已知椭圆:的左、右焦点分别为,过点作垂直于轴的直线,直线垂直于点,线段的垂直平分线交于点.(1)求点的轨迹的方程;(2)过点作两条互相垂直的直线,且分别交椭圆于,求四边形面积的最小值.22 (本题满分12分)在如图所示的几何体中,四边形为矩形,直线平面,点在棱上.(1)求证:;(2)若是的中点,求异面直线与所成角的余弦值;(3)若,求二面角的余弦值.23如图,点A是单位圆与x轴正半轴的交点,B(,)(I)若AOB=,求cos+sin的值;(II)设点P为单位圆上的一个动点,点Q满足=+若AOP=2,表示|,并求|的最大值 24如图在长方形ABCD中,是CD的中点,M是线段AB上的点,(1)若M是AB的中点,求证:与共线;(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置镇远县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:依题意,不等式化为,解得1x2,故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解2 【答案】C【解析】解:模拟执行程序框图,可得S=1,k=1k=2,S=4不满足条件k3,k=3,S=11不满足条件k3,k=4,S=26满足条件k3,退出循环,输出S的值为26故选:C【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的k,S的值是解题的关键,属于基本知识的考查3 【答案】【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入bx2.6得b0.95,即0.95x2.6,当8.3时,则有8.30.95x2.6,x6,B正确根据性质,随机误差的均值为0,C正确样本点(3,4.8)的残差4.8(0.9532.6)0.65,D错误,故选D.4 【答案】C 解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队各个班的人数有5班的3人、16班的4人、33班的5人,首发共有1、2、2;2、1、2;2、2、1类型;所求方案有: +=390故选:C5 【答案】 D【解析】解:要使这些曲线上存在点P满足|MP|=|NP|,需曲线与MN的垂直平分线相交MN的中点坐标为(,0),MN斜率为=MN的垂直平分线为y=2(x+),4x+2y1=0与y=2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知不符合题意x2+y2=3与y=2(x+),联立,消去y得5x212x+6=0,=1444560,可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得9x224x16=0,0可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得7x224x+20=0,0可知中的曲线与MN的垂直平分线有交点,故选D6 【答案】A.【解析】,设,显然是偶函数,且在上单调递增,故在上单调递减,故是充分必要条件,故选A.7 【答案】A【解析】解:直线x+y1=0与2x+2y+3=0的距离,就是直线2x+2y2=0与2x+2y+3=0的距离是: =故选:A8 【答案】A【解析】解:因为向量=(3,m),=(2,1),所以3=2m,解得m=故选:A【点评】本题考查向量共线的充要条件的应用,基本知识的考查9 【答案】B解析:(3+4i)z=25,z=34i=3+4i故选:B10【答案】B【解析】解:若f(x)=|xm|x1|是定义在R上的奇函数,则f(0)=|m|1=0,则m=1或m=1,当m=1时,f(x)=|x1|x1|=0,此时为偶函数,不满足条件,当m=1时,f(x)=|x+1|x1|,此时为奇函数,满足条件,作出函数f(x)的图象如图:则函数在上为增函数,最小值为2,故正确的是B,故选:B【点评】本题主要考查函数的奇偶性的应用,根据条件求出m的值是解决本题的关键注意使用数形结合进行求解11【答案】C【解析】解:A未注明a,b,c,dRB实数是复数,实数能比较大小C =,则z1=z2,正确;Dz1与z2的模相等,符合条件的z1,z2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确故选:C12【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,所求概率为故选B二、填空题13【答案】 【解析】解:法1:取A1C1的中点D,连接DM,则DMC1B1,在在直三棱柱中,ACB=90,DM平面AA1C1C,则MAD是AM与平面AA1C1C所的成角,则DM=,AD=,则tanMAD=法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,则AC=BC=1,侧棱AA1=,M为A1B1的中点,=(,),=(0,1,0)为平面AA1C1C的一个法向量设AM与平面AA1C1C所成角为,则sin=|=则tan=故选:A【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键14【答案】 【解析】解:不等式组的可行域为:由题意,A(1,1),区域的面积为=(x3)=,由,可得可行域的面积为:1=,坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为: =故答案为:【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积15【答案】y=1.7t+68.7 【解析】解: =, =63.6=(2)4.4+(1)1.4+0+1(1.6)+2(2.6)=17=4+1+0+1+2=10=1.7. =63.6+1.73=68.7y关于t的线性回归方程为y=1.7t+68.7故答案为y=1.7t+68.7【点评】本题考查了线性回归方程的解法,属于基础题16【答案】a1 【解析】解:由x22x30得x3或x1,若“xa”是“x22x30”的充分不必要条件,则a1,故答案为:a1【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键17【答案】240 【解析】解:a=(cosxsinx)dx=(sinx+cosx)=11=2,则二项式(x2)6=(x2+)6展开始的通项公式为Tr+1=2rx123r,令123r=0,求得r=4,可得二项式(x2)6展开式中的常数项是24=240,故答案为:240【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题18【答案】 菱形;矩形 【解析】解:如图所示:EFAC,GHAC且EF=AC,GH=AC四边形EFGH是平行四边形又AC=BDEF=FG四边形EFGH是菱形由知四边形EFGH是平行四边形又ACBD,EFFG四边形EFGH是矩形故答案为:菱形,矩形【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题三、解答题19【答案】 【解析】解:()f(x)=4sinxcosx5sin2xcos2x+3=2sin2x+3=2sin2x+2cos2x=4sin(2x+)x0,2x+,f(x)2,4()由条件得 sin(2A+C)=2sinA+2sinAcos(A+C),sinAcos(A+C)+cosAsin(A+C)=2sinA+2sinAcos(A+C),化简得 sinC=2sinA,由正弦定理得:c=2a,又b=,由余弦定理得:a2=b2+c22bccosA=3a2+4a24a2cosA,解得:cosA=,故解得:A=,B=,C=,f(B)=f()=4sin=2【点评】本题考查了平方关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理、余弦定理,考查了推理能力和计算能力,属于中档题20【答案】 【解析】解:()在中,根据正弦定理,于是()在中,根据余弦定理,得于是所以 21【答案】(1);(2).【解析】试题分析:(1)求得椭圆的焦点坐标,连接,由垂直平分线的性质可得,运用抛物线的定义,即可得到所求轨迹方程;(2)分类讨论:当或中的一条与轴垂直而另一条与轴重合时,此时四边形面积当直线和的斜率都存在时,不妨设直线的方程为,则直线的方程为分别与椭圆的方程联立得到根与系数的关系,利用弦长公式可得,利用四边形面积即可得到关于斜率的式子,再利用配方和二次函数的最值求法,即可得出(2)当直线的斜率存在且不为零时,直线的斜率为,则直线的斜率为,直线的方程为,联立,得.111,.由于直线的斜率为,用代换上式中的。可得.,四边形的面积.由于,当且仅当,即时取得等号.易知,当直线的斜率不存在或斜率为零时,四边形的面积.综上,四边形面积的最小值为.考点:椭圆的简单性质1【思路点晴】求得椭圆的焦点坐标,由垂直平分线的性质可得,运用抛物线的定义,即可得所求的轨迹方程.第二问分类讨论,当或中的一条与轴垂直而另一条与轴重合时,四边形面积为.当直线和的斜率都存在时,分别设出的直线方程与椭圆联立得到根与系数的关系,利用弦长公式求得,从而利用四边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论