




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷掇刀区二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知集合P=x|1xb,bN,Q=x|x23x0,xZ,若PQ,则b的最小值等于( )A0B1C2D32 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( )A36种B38种C108种D114种3 若,则下列不等式一定成立的是( )ABCD4 双曲线的渐近线方程是( )ABCD5 已知集合M=1,4,7,MN=M,则集合N不可能是( )AB1,4CMD2,76 有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( )A3,6,9,12,15,18B4,8,12,16,20,24C2,7,12,17,22,27D6,10,14,18,22,267 如果点在平面区域上,点在曲线上,那么的最小值为( )A B C. D8 设为虚数单位,则()A B C D9 在中,内角,所对的边分别是,已知,则( )A B C. D10已知角的终边经过点P(4,m),且sin=,则m等于( )A3B3CD311已知抛物线:的焦点为,定点,若射线与抛物线交于点,与抛物线的准线交于点,则的值是( )A B C D12已知两点M(1,),N(4,),给出下列曲线方程:4x+2y1=0; x2+y2=3; +y2=1; y2=1在曲线上存在点P满足|MP|=|NP|的所有曲线方程是( )ABCD二、填空题13若与共线,则y=14将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是15已知函数f(x)=(2x+1)ex,f(x)为f(x)的导函数,则f(0)的值为16命题“若,则”的否命题为17已知a=(cosxsinx)dx,则二项式(x2)6展开式中的常数项是18台风“海马”以25km/h的速度向正北方向移动,观测站位于海上的A点,早上9点观测,台风中心位于其东南方向的B点;早上10点观测,台风中心位于其南偏东75方向上的C点,这时观测站与台风中心的距离AC等于km三、解答题19如图所示,在正方体ABCDA1B1C1D1中,E、F分别是棱DD1、C1D1的中点()证明:平面ADC1B1平面A1BE;()证明:B1F平面A1BE;()若正方体棱长为1,求四面体A1B1BE的体积20已知函数f(x)=,其中=(2cosx, sin2x),=(cosx,1),xR(1)求函数y=f(x)的单调递增区间;(2)在ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=,且sinB=2sinC,求ABC的面积21如图所示,在正方体ABCDA1B1C1D1中,E是棱DD1的中点()求直线BE与平面ABB1A1所成的角的正弦值;()在棱C1D1上是否存在一点F,使B1F平面A1BE?证明你的结论22求点A(3,2)关于直线l:2xy1=0的对称点A的坐标23已知抛物线C:x2=2y的焦点为F()设抛物线上任一点P(m,n)求证:以P为切点与抛物线相切的方程是mx=y+n;()若过动点M(x0,0)(x00)的直线l与抛物线C相切,试判断直线MF与直线l的位置关系,并予以证明24为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有a人在排队等候购票开始售票后,排队的人数平均每分钟增加b人假设每个窗口的售票速度为c人/min,且当开放2个窗口时,25min后恰好不会出现排队现象(即排队的人刚好购完);若同时开放3个窗口,则15min后恰好不会出现排队现象若要求售票10min后不会出现排队现象,则至少需要同时开几个窗口?掇刀区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:集合P=x|1xb,bN,Q=x|x23x0,xZ=1,2,PQ,可得b的最小值为:2故选:C【点评】本题考查集合的基本运算,交集的意义,是基础题2 【答案】A【解析】解:由题意可得,有2种分配方案:甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法根据分步计数原理,共有323=18种分配方案甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共323=18种分配方案由分类计数原理,可得不同的分配方案共有18+18=36种,故选A【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法3 【答案】D【解析】因为,有可能为负值,所以排除A,C,因为函数为减函数且,所以,排除B,故选D答案:D 4 【答案】B【解析】解:双曲线标准方程为,其渐近线方程是=0,整理得y=x故选:B【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程属于基础题5 【答案】D【解析】解:MN=M,NM,集合N不可能是2,7,故选:D【点评】本题主要考查集合的关系的判断,比较基础6 【答案】C【解析】解:从30件产品中随机抽取6件进行检验,采用系统抽样的间隔为306=5,只有选项C中编号间隔为5,故选:C7 【答案】A【解析】试题分析:根据约束条件画出可行域表示圆上的点到可行域的距离,当在点处时,求出圆心到可行域的距离内的点的最小距离,当在点处最小, 最小值为,因此,本题正确答案是.考点:线性规划求最值.8 【答案】C【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C9 【答案】A【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理,余弦定理, 实现边与角的互相转化.10【答案】B【解析】解:角的终边经过点P(4,m),且sin=,可得,(m0)解得m=3故选:B【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查11【答案】D【解析】考点:1、抛物线的定义; 2、抛物线的简单性质.【 方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将到焦点的距离转化为到准线的距离后进行解答的.12【答案】 D【解析】解:要使这些曲线上存在点P满足|MP|=|NP|,需曲线与MN的垂直平分线相交MN的中点坐标为(,0),MN斜率为=MN的垂直平分线为y=2(x+),4x+2y1=0与y=2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知不符合题意x2+y2=3与y=2(x+),联立,消去y得5x212x+6=0,=1444560,可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得9x224x16=0,0可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得7x224x+20=0,0可知中的曲线与MN的垂直平分线有交点,故选D二、填空题13【答案】6 【解析】解:若与共线,则2y3(4)=0解得y=6故答案为:6【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y的方程,是解答本题的关键14【答案】 【解析】解:设剪成的小正三角形的边长为x,则:S=,(0x1)令3x=t,t(2,3),S=,当且仅当t=即t=2时等号成立;故答案为:15【答案】3 【解析】解:f(x)=(2x+1)ex,f(x)=2ex+(2x+1)ex,f(0)=2e0+(20+1)e0=2+1=3故答案为:316【答案】若,则【解析】试题分析:若,则,否命题要求条件和结论都否定考点:否命题.17【答案】240 【解析】解:a=(cosxsinx)dx=(sinx+cosx)=11=2,则二项式(x2)6=(x2+)6展开始的通项公式为Tr+1=2rx123r,令123r=0,求得r=4,可得二项式(x2)6展开式中的常数项是24=240,故答案为:240【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题18【答案】25 【解析】解:由题意,ABC=135,A=7545=30,BC=25km,由正弦定理可得AC=25km,故答案为:25【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键三、解答题19【答案】 【解析】()证明:ABCDA1B1C1D1为正方体,B1C1平面ABB1A1;A1B平面ABB1A1,B1C1A1B又A1BAB1,B1C1AB1=B1,A1B平面ADC1B1,A1B平面A1BE,平面ADC1B1平面A1BE;()证明:连接EF,EF,且EF=,设AB1A1B=O,则B1OC1D,且,EFB1O,且EF=B1O,四边形B1OEF为平行四边形B1FOE又B1F平面A1BE,OE平面A1BE,B1F平面A1BE,()解: =20【答案】 【解析】解:(1)f(x)=2cos2x+sin2x=sin2x+cos2x+1=2sin(2x+)+1,令+2k2x+2k,解得+kx+k,函数y=f(x)的单调递增区间是+k, +k,()f(A)=22sin(2A+)+1=2,即sin(2A+)= 又0A,A=a=,由余弦定理得a2=b2+c22bccosA=(b+c)23bc=7 sinB=2sinCb=2c 由得c2=SABC=21【答案】 【解析】解:(I)如图(a),取AA1的中点M,连接EM,BM,因为E是DD1的中点,四边形ADD1A1为正方形,所以EMAD又在正方体ABCDA1B1C1D1中AD平面ABB1A1,所以EM面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,EBM直线BE与平面ABB1A1所成的角设正方体的棱长为2,则EM=AD=2,BE=,于是在RtBEM中,即直线BE与平面ABB1A1所成的角的正弦值为()在棱C1D1上存在点F,使B1F平面A1BE,事实上,如图(b)所示,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,因A1D1B1C1BC,且A1D1=BC,所以四边形A1BCD1为平行四边形,因此D1CA1B,又E,G分别为D1D,CD的中点,所以EGD1C,从而EGA1B,这说明A1,B,G,E共面,所以BG平面A1BE因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FGC1CB1B,且FG=C1C=B1B,因此四边形B1BGF为平行四边形,所以B1FBG,而B1F平面A1BE,BG平面A1BE,故B1F平面A1BE【点评】本题考查直线与平面所成的角,直线与平面平行,考查考生探究能力、空间想象能力22【答案】 【解析】解:设点A(3,2)关于直线l:2xy1=0的对称点A的坐标为(m,n),则线段AA的中点B(,),由题意得B在直线l:2xy1=0上,故 21=0 再由线段AA和直线l垂直,斜率之积等于1得 =1 ,解做成的方程组可得:m=,n=,故点A的坐标为(,)【点评】本题考查求一个点关于直线的对称点的坐标的方法,注意利用垂直及中点在轴上两个条件23【答案】 【解析】证明:()由抛物线C:x2=2y得,y=x2,则y=x,在点P(m,n)切线的斜率k=m,切线方程是yn=m(xm),即yn=mxm2,又点P(m,n)是抛物线上一点,m2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课文主题研讨:古诗文赏析:山水田园诗选高一语文
- 学习雷锋做好学生写人作文(13篇)
- 一碳化合物中试平台建设的市场需求与发展趋势分析
- 高校会计核算创新路径与业财融合模式探讨
- 2025年音乐表演专业考试试卷及答案
- 2025年医药营销与管理考试试卷及答案
- 2025年外语教学专业考试试卷及答案
- 2025年企业战略管理硕士入学考试试题及答案
- 2025年旅游经济与管理课程测试卷及答案
- 2025年计算机编程与算法基础测试题及答案
- 2023年河北石家庄市属国有企业招聘笔试参考题库附带答案详解
- 集团集中采购管理制度(试运行)
- GB/T 5210-2006色漆和清漆拉开法附着力试验
- GB/T 39165-2020电阻点焊及凸焊接头的剥离和凿离试验方法
- GB/T 20698-200656%2甲4氯钠可溶粉剂
- 行政事业单位经济业务不相容岗位相分离控制制度模板
- 统计学原理试题与答案
- (妇产科学)第十八章 女性生殖系统炎症课件
- 立式加工中心的基本操作专题培训课件
- 阿克苏地区生态环境准入清单
- 产品创新设计与实践完整版课件全套ppt教学教程电子教案讲义最全(最新)
评论
0/150
提交评论