隆化县一中2018-2019学年上学期高二数学12月月考试题含解析_第1页
隆化县一中2018-2019学年上学期高二数学12月月考试题含解析_第2页
隆化县一中2018-2019学年上学期高二数学12月月考试题含解析_第3页
隆化县一中2018-2019学年上学期高二数学12月月考试题含解析_第4页
隆化县一中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

隆化县一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知f(x)=4+ax1的图象恒过定点P,则点P的坐标是( )A(1,5)B(1,4)C(0,4)D(4,0)2 若命题p:x0R,sinx0=1;命题q:xR,x2+10,则下列结论正确的是( )Ap为假命题Bq为假命题Cpq为假命题Dpq真命题3 设等差数列an的前n项和为Sn,已知S4=2,S5=0,则S6=( )A0B1C2D34 过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2),若x1+x2=6,则|AB|为( )A8B10C6D45 如图在圆中,是圆互相垂直的两条直径,现分别以,为直径作四个圆,在圆内随机取一点,则此点取自阴影部分的概率是( )DABCOA B C D【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度6 已知椭圆C: +=1(ab0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若AF1B的周长为4,则C的方程为( )A +=1B +y2=1C +=1D +=17 在ABC中,若A=2B,则a等于( )A2bsinAB2bcosAC2bsinBD2bcosB8 与命题“若xA,则yA”等价的命题是( )A若xA,则yAB若yA,则xAC若xA,则yAD若yA,则xA9 学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( )A20种B24种C26种D30种10若函数f(x)=ax2+bx+1是定义在1a,2a上的偶函数,则该函数的最大值为( )A5B4C3D211已知函数f(x)满足f(x)=f(x),且当x(,)时,f(x)=ex+sinx,则( )ABCD12已知f(x)是R上的偶函数,且在(,0)上是增函数,设,b=f(log43),c=f(0.41.2)则a,b,c的大小关系为( )AacbBbacCcabDcba二、填空题13给出下列命题:把函数y=sin(x)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin(2x);若,是第一象限角且,则coscos;x=是函数y=cos(2x+)的一条对称轴;函数y=4sin(2x+)与函数y=4cos(2x)相同;y=2sin(2x)在是增函数;则正确命题的序号14函数f(x)=(x3)的最小值为15已知(ax+1)5的展开式中x2的系数与的展开式中x3的系数相等,则a=16已知点E、F分别在正方体的棱上,且,则面AEF与面ABC所成的二面角的正切值等于 .17一组数据2,x,4,6,10的平均值是5,则此组数据的标准差是18在极坐标系中,O是极点,设点A,B的极坐标分别是(2,),(3,),则O点到直线AB的距离是三、解答题19已知曲线C的极坐标方程为42cos2+92sin2=36,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系;()求曲线C的直角坐标方程;()若P(x,y)是曲线C上的一个动点,求3x+4y的最大值20设函数()求函数的最小正周期;()求函数在上的最大值与最小值21实数m取什么数值时,复数z=m+1+(m1)i分别是:(1)实数?(2)虚数?(3)纯虚数?22某运动员射击一次所得环数X的分布如下:X0678910P00.20.30.30.2现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为(I)求该运动员两次都命中7环的概率;()求的数学期望E23解不等式|2x1|x|+1 24已知函数f(x)=xalnx(aR)(1)当a=2时,求曲线y=f(x)在点A(1,f(1)处的切线方程;(2)求函数f(x)的极值隆化县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:令x1=0,解得x=1,代入f(x)=4+ax1得,f(1)=5,则函数f(x)过定点(1,5)故选A2 【答案】A【解析】解:时,sinx0=1;x0R,sinx0=1;命题p是真命题;由x2+10得x21,显然不成立;命题q是假命题;p为假命题,q为真命题,pq为真命题,pq为假命题;A正确故选A【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对R满足x20,命题p,pq,pq的真假和命题p,q真假的关系3 【答案】D【解析】解:设等差数列an的公差为d,则S4=4a1+d=2,S5=5a1+d=0,联立解得,S6=6a1+d=3故选:D【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题4 【答案】A【解析】解:由题意,p=2,故抛物线的准线方程是x=1,抛物线y2=4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点|AB|=2(x1+x2),又x1+x2=6|AB|=2(x1+x2)=8故选A5 【答案】【解析】设圆的半径为,根据图形的对称性,可以选择在扇形中研究问题,过两个半圆的交点分别向,作垂线,则此时构成一个以为边长的正方形,则这个正方形内的阴影部分面积为,扇形的面积为,所求概率为6 【答案】A【解析】解:AF1B的周长为4,AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,4a=4,a=,离心率为,c=1,b=,椭圆C的方程为+=1故选:A【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题7 【答案】D【解析】解:A=2B,sinA=sin2B,又sin2B=2sinBcosB,sinA=2sinBcosB,根据正弦定理=2R得:sinA=,sinB=,代入sinA=2sinBcosB得:a=2bcosB故选D8 【答案】D【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可与命题“若xA,则yA”等价的命题是若yA,则xA故选D9 【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案故共有10+6+3+1=20种不同的分配方案,故选:A【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想10【答案】A【解析】解:函数f(x)=ax2+bx+1是定义在1a,2a上的偶函数,可得b=0,并且1+a=2a,解得a=1,所以函数为:f(x)=x2+1,x2,2,函数的最大值为:5故选:A【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力11【答案】D【解析】解:由f(x)=f(x)知,f()=f()=f(),当x(,)时,f(x)=ex+sinx为增函数,f()f()f(),f()f()f(),故选:D12【答案】C【解析】解:由题意f(x)=f(|x|)log431,|log43|1;2|ln|=|ln3|1;|0.41.2|=|1.2|2|0.41.2|ln|log43|又f(x)在(,0上是增函数且为偶函数,f(x)在0,+)上是减函数cab故选C二、填空题13【答案】 【解析】解:对于,把函数y=sin(x)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin(2x),故正确对于,当,是第一象限角且,如=30,=390,则此时有cos=cos=,故错误对于,当x=时,2x+=,函数y=cos(2x+)=1,为函数的最小值,故x=是函数y=cos(2x+)的一条对称轴,故正确对于,函数y=4sin(2x+)=4cos(2x+)=4cos(2)=4cos(2x),故函数y=4sin(2x+)与函数y=4cos(2x)相同,故正确对于,在上,2x,函数y=2sin(2x)在上没有单调性,故错误,故答案为:14【答案】12 【解析】解:因为x3,所以f(x)0由题意知: =令t=(0,),h(t)=t3t2因为 h(t)=t3t2 的对称轴x=,开口朝上知函数h(t)在(0,)上单调递增,(,)单调递减;故h(t)(0,由h(t)=f(x)=12故答案为:1215【答案】 【解析】解:(ax+1)5的展开式中x2的项为=10a2x2,x2的系数为10a2,与的展开式中x3的项为=5x3,x3的系数为5,10a2=5,即a2=,解得a=故答案为:【点评】本题主要考查二项式定理的应用,利用展开式的通项公式确定项的系数是解决本题的关键16【答案】【解析】延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。17【答案】2 【解析】解:一组数据2,x,4,6,10的平均值是5,2+x+4+6+10=55,解得x=3,此组数据的方差 (25)2+(35)2+(45)2+(65)2+(105)2=8,此组数据的标准差S=2故答案为:2【点评】本题考查一组数据的标准差的求法,解题时要认真审题,注意数据的平均数和方差公式的求法18【答案】 【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(,),故AB的斜率为,故直线AB的方程为 y=(x3),即x+3y12=0,所以O点到直线AB的距离是=,故答案为:【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题三、解答题19【答案】 【解析】解:()由42cos2+92sin2=36得4x2+9y2=36,化为;()设P(3cos,2sin),则3x+4y=,R,当sin(+)=1时,3x+4y的最大值为【点评】本题考查了椭圆的极坐标方程、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题20【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】()因为所以函数的最小正周期为()由(),得因为,所以,所以所以且当时,取到最大值;当时,取到最小值21【答案】 【解析】解:(1)当m1=0,即m=1时,复数z是实数;(2)当m10,即m1时,复数z是虚数;(3)当m+1=0,且m10时,即m=1时,复数z 是纯虚数【点评】本题考查复数的概念,属于基础题22【答案】 【解析】解:(1)设A=“该运动员两次都命中7环”,则P(A)=0.20.2=0.04(2)依题意在可能取值为:7、8、9、10且P(=7)=0.04,P(=8)=20.20.3+0.32=0.21,P(=9)=20.20.3+20.30.30.32=0.39,P(=10)=20.20.2+20.30.2+20.30.2+0.22=0.36,的分布列为:78910P0.040.210.390.36的期望为E=70.04+80.21+90.39+100.36=9.07【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用23【答案】 【解析】解:根据题意,对x分3种情况讨论:当x0时,原不等式可化为2x+1x+1,解得x0,又x0,则x不存在,此时,不等式的解集为当时,原不等式可化为2x+1x+1,解得x0,又,此时其解集为x|当时,原不等式可化为2x1x+1,解得,又由,此时其解集为x|,x| x| =x|0x2;综上,原不等式的解集为x|0x2【点评】本题考查绝对值不等式的解法,涉及分类讨论的数学思想,关键是用分段讨论法去掉绝对值,化为与之等价的不等式来解24【答案】 【解析】解:函数f(x)的定义域为(0,+),(1)当a=2时,f(x)=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论