郫都区二中2018-2019学年上学期高二数学12月月考试题含解析_第1页
郫都区二中2018-2019学年上学期高二数学12月月考试题含解析_第2页
郫都区二中2018-2019学年上学期高二数学12月月考试题含解析_第3页
郫都区二中2018-2019学年上学期高二数学12月月考试题含解析_第4页
郫都区二中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷郫都区二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 下列计算正确的是( )A、 B、 C、 D、2 数列an满足a1=, =1(nN*),则a10=( )ABCD3 =( )A2B4CD24 平面与平面平行的条件可以是( )A内有无穷多条直线与平行B直线a,aC直线a,直线b,且a,bD内的任何直线都与平行5 下列命题中的说法正确的是( )A命题“若x2=1,则x=1”的否命题为“若x2=1,则x1”B“x=1”是“x2+5x6=0”的必要不充分条件C命题“xR,使得x2+x+10”的否定是:“xR,均有x2+x+10”D命题“在ABC中,若AB,则sinAsinB”的逆否命题为真命题6 设是虚数单位,则复数在复平面内所对应的点位于( )A第一象限 B第二象限 C第三象限 D第四象限7 下列函数中,既是偶函数,又在区间(0,+)上单调递减的是( )ABy=x2Cy=x|x|Dy=x28 在数列an中,a1=3,an+1an+2=2an+1+2an(nN+),则该数列的前2015项的和是( )A7049B7052C14098D141019 为了得到函数y=sin3x的图象,可以将函数y=sin(3x+)的图象( )A向右平移个单位B向右平移个单位C向左平移个单位D向左平移个单位10设复数z满足z(1+i)=2(i为虚数单位),则z=( )A1iB1+iC1iD1+i11已知f(x)是定义在R上周期为2的奇函数,当x(0,1)时,f(x)=3x1,则f(log35)=( )ABC4D12已知函数f(x)=2ax33x2+1,若 f(x)存在唯一的零点x0,且x00,则a的取值范围是( )A(1,+)B(0,1)C(1,0)D(,1)二、填空题13已知实数x,y满足约束条,则z=的最小值为14在ABC中,角A,B,C的对边分别为a,b,c,sinA,sinB,sinC依次成等比数列,c=2a且=24,则ABC的面积是15已知奇函数f(x)的定义域为2,2,且在定义域上单调递减,则满足不等式f(1m)+f(12m)0的实数m的取值范围是16已知命题p:xR,x2+2x+a0,若命题p是假命题,则实数a的取值范围是(用区间表示)17在中,有等式:;.其中恒成立的等式序号为_.18直线与抛物线交于,两点,且与轴负半轴相交,若为坐标原点,则面积的最大值为 .【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.三、解答题19(本小题满分10分)选修4-4:坐标系与参数方程已知椭圆的极坐标方程为,点为其左、右焦点,直线的参数方程为(为参数,).(1)求直线和曲线的普通方程;(2)求点到直线的距离之和.20已知A、B、C为ABC的三个内角,他们的对边分别为a、b、c,且(1)求A;(2)若,求bc的值,并求ABC的面积 21已知全集U为R,集合A=x|0x2,B=x|x3,或x1求:(I)AB;(II)(CUA)(CUB);(III)CU(AB)22已知mR,函数f(x)=(x2+mx+m)ex(1)若函数f(x)没有零点,求实数m的取值范围;(2)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式;(3)当m=0时,求证:f(x)x2+x323已知f(x)=(1+x)m+(1+2x)n(m,nN*)的展开式中x的系数为11(1)求x2的系数取最小值时n的值(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和24在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为(sin+cos)=1,曲线C2的参数方程为(为参数)()求曲线C1的直角坐标方程与曲线C2的普通方程;()试判断曲线C1与C2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由 郫都区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】试题分析:根据可知,B正确。考点:指数运算。2 【答案】C【解析】解: =1(nN*),=1,数列是等差数列,首项为=2,公差为1=2(n1)=n1,an=1=a10=故选:C【点评】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题3 【答案】A【解析】解:(cosxsinx)=sinxcosx,=2故选A4 【答案】D【解析】解:当内有无穷多条直线与平行时,a与可能平行,也可能相交,故不选A当直线a,a时,a与可能平行,也可能相交,故不选 B当直线a,直线b,且a 时,直线a 和直线 b可能平行,也可能是异面直线,故不选 C 当内的任何直线都与 平行时,由两个平面平行的定义可得,这两个平面平行,故选 D【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况5 【答案】D【解析】解:A命题“若x2=1,则x=1”的否命题为“若x21,则x1”,故A错误,B由x2+5x6=0得x=1或x=6,即“x=1”是“x2+5x6=0”既不充分也不必要条件,故B错误,C命题“xR,使得x2+x+10”的否定是:“xR,均有x2+x+105,故C错误,D若AB,则ab,由正弦定理得sinAsinB,即命题“在ABC中,若AB,则sinAsinB”的为真命题则命题的逆否命题也成立,故D正确故选:D【点评】本题主要考查命题的真假判断,涉及四种命题的关系以及充分条件和必要条件的判断,含有量词的命题的否定,比较基础6 【答案】B【解析】因为所以,对应的点位于第二象限故答案为:B【答案】B7 【答案】D【解析】解:函数为非奇非偶函数,不满足条件;函数y=x2为偶函数,但在区间(0,+)上单调递增,不满足条件;函数y=x|x|为奇函数,不满足条件;函数y=x2为偶函数,在区间(0,+)上单调递减,满足条件;故选:D【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题8 【答案】B【解析】解:an+1an+2=2an+1+2an(nN+),(an+12)(an2)=2,当n2时,(an2)(an12)=2,可得an+1=an1,因此数列an是周期为2的周期数列a1=3,3a2+2=2a2+23,解得a2=4,S2015=1007(3+4)+3=7052【点评】本题考查了数列的周期性,考查了计算能力,属于中档题9 【答案】A【解析】解:由于函数y=sin(3x+)=sin3(x+)的图象向右平移个单位,即可得到y=sin3(x+)= sin3x的图象,故选:A【点评】本题主要考查函数y=Asin(x+)的图象平移变换,属于中档题10【答案】A【解析】解:z(1+i)=2,z=1i故选:A【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题11【答案】B【解析】解:f(x)是定义在R上周期为2的奇函数,f(log35)=f(log352)=f(log3),x(0,1)时,f(x)=3x1f(log3)故选:B12【答案】D【解析】解:若a=0,则函数f(x)=3x2+1,有两个零点,不满足条件若a0,函数的f(x)的导数f(x)=6ax26x=6ax(x),若 f(x)存在唯一的零点x0,且x00,若a0,由f(x)0得x或x0,此时函数单调递增,由f(x)0得0x,此时函数单调递减,故函数在x=0处取得极大值f(0)=10,在x=处取得极小值f(),若x00,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件若a0,由f(x)0得x0,此时函数递增,由f(x)0得x或x0,此时函数单调递减,即函数在x=0处取得极大值f(0)=10,在x=处取得极小值f(),若存在唯一的零点x0,且x00,则f()0,即2a()33()2+10,()21,即10,解得a1,故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键注意分类讨论二、填空题13【答案】 【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=32x+y,设t=2x+y,则y=2x+t,平移直线y=2x+t,由图象可知当直线y=2x+t经过点B时,直线y=2x+t的截距最小,此时t最小由,解得,即B(3,3),代入t=2x+y得t=2(3)+3=3t最小为3,z有最小值为z=33=故答案为:【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法14【答案】4 【解析】解:sinA,sinB,sinC依次成等比数列,sin2B=sinAsinC,由正弦定理可得:b2=ac,c=2a,可得:b=a,cosB=,可得:sinB=,=24,可得:accosB=ac=24,解得:ac=32,SABC=acsinB=4故答案为:415【答案】, 【解析】解:函数奇函数f(x)的定义域为2,2,且在定义域上单调递减,不等式f(1m)+f(12m)0等价为f(1m)f(12m)=f(2m1),即,即,得m,故答案为:,【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键注意定义域的限制16【答案】(1,+) 【解析】解:命题p:xR,x2+2x+a0,当命题p是假命题时,命题p:xR,x2+2x+a0是真命题;即=44a0,a1;实数a的取值范围是(1,+)故答案为:(1,+)【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目17【答案】【解析】 试题分析:对于中,由正弦定理可知,推出或,所以三角形为等腰三角形或直角三角形,所以不正确;对于中,即恒成立,所以是正确的;对于中,可得,不满足一般三角形,所以不正确;对于中,由正弦定理以及合分比定理可知是正确,故选选1考点:正弦定理;三角恒等变换18【答案】【解析】三、解答题19【答案】(1)直线的普通方程为,曲线的普通方程为;(2)【解析】试题分析:(1)由公式可化极坐标方程为直角坐标方程,利用消参法可化参数方程为普通方程;考点:极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化,点到直线的距离公式20【答案】【解析】解:(1)A、B、C为ABC的三个内角,且cosBcosCsinBsinC=cos(B+C)=,B+C=,则A=;(2)a=2,b+c=4,cosA=,由余弦定理得:a2=b2+c22bccosA=b2+c2+bc=(b+c)2bc,即12=16bc,解得:bc=4,则SABC=bcsinA=4=【点评】此题考查了两角和与差的余弦函数公式,余弦定理,以及三角形面积公式,熟练掌握公式及定理是解本题的关键21【答案】 【解析】解:如图:(I)AB=x|1x2;(II)CUA=x|x0或x2,CUB=x|3x1(CUA)(CUB)=x|3x0;(III)AB=x|x3或x0,CU(AB)=x|3x0【点评】本题考查集合的运算问题,考查数形集合思想解题属基本运算的考查22【答案】 【解析】解:(1)令f(x)=0,得(x2+mx+m)ex=0,所以x2+mx+m=0因为函数f(x)没有零点,所以=m24m0,所以0m4(2)f(x)=(2x+m)ex+(x2+mx+m)ex=(x+2)(x+m)ex,令f(x)=0,得x=2,或x=m,当m2时,m2列出下表:x(,m)m(m,2)2(2,+)f(x)+00+f(x)mem(4m)e2当x=m时,f(x)取得极大值mem当m=2时,f(x)=(x+2)2ex0,f(x)在R上为增函数,所以f(x)无极大值当m2时,m2列出下表:x(,2)2(2,m)m(m,+)f(x)+00+f(x)(4m)e2mem当x=2时,f(x)取得极大值(4m)e2,所以(3)当m=0时,f(x)=x2ex,令(x)=ex1x,则(x)=ex1,当x0时,(x)0,(x)为增函数;当x0时,(x)0,(x)为减函数,所以当x=0时,(x)取得最小值0所以(x)(0)=0,ex1x0,所以ex1+x,因此x2exx2+x3,即f(x)x2+x3【点评】本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键23【答案】 【解析】【专题】计算题【分析】(1)利用二项展开式的通项公式求出展开式的x的系数,列出方程得到m,n的关系;利用二项展开式的通项公式求出x2的系数,将m,n的关系代入得到关于m的二次函数,配方求出最小值(2)通过对x分别赋值1,1,两式子相加求出展开式中x的奇次幂项的系数之和【解答】解:(1)由已知Cm1+2Cn1=11,m+2n=11,x2的系数为Cm2+22Cn2=+2n(n1)=+(11m)(1)=(m)2+mN*,m=5时,x2的系数取得最小值22,此时n=3(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,f(x)=(1+x)5+(1+2x)3设这时f(x)的展开式为f(x)=a0+a1x+a2x2+a5x5,令x=1,a0+a1+a2+a3+a4+a5=25+33,令x=1,a0a1+a2a3+a4a5=1,两式相减得2(a1+a3+a5)=60,故展开式中x的奇次幂项的系数之和为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论