




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
秀峰区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若函数f(x)=loga(2x2+x)(a0且a1)在区间(0,)内恒有f(x)0,则f(x)的单调递增区间为( )A(,)B(,+)C(0,+)D(,)2 在直三棱柱中,ACB=90,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为( )ABCD3 已知命题且是单调增函数;命题,.则下列命题为真命题的是( )A B C. D4 已知正方体ABCDA1B1C1D1中,点E为上底面A1C1的中心,若+,则x、y的值分别为( )Ax=1,y=1Bx=1,y=Cx=,y=Dx=,y=15 已知f(x)=m2x+x2+nx,若x|f(x)=0=x|f(f(x)=0,则m+n的取值范围为( )A(0,4)B0,4)C(0,5D0,56 设l,m,n表示不同的直线,表示不同的平面,给出下列四个命题:若ml,m,则l;若ml,m,则l;若=l,=m,=n,则lmn;若=l,=m,=n,n,则lm其中正确命题的个数是( )A1B2C3D47 下列各组表示同一函数的是( )Ay=与y=()2By=lgx2与y=2lgxCy=1+与y=1+Dy=x21(xR)与y=x21(xN)8 下列4个命题:命题“若x2x=0,则x=1”的逆否命题为“若x1,则x2x0”;若“p或q”是假命题,则“p且q”是真命题;若p:x(x2)0,q:log2x1,则p是q的充要条件;若命题p:存在xR,使得2xx2,则p:任意xR,均有2xx2;其中正确命题的个数是( )A1个B2个C3个D4个9 已知向量,若,则实数( )A. B.C. D. 【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力10已知圆C:x2+y22x=1,直线l:y=k(x1)+1,则l与C的位置关系是()A一定相离B一定相切C相交且一定不过圆心D相交且可能过圆心11下列命题中错误的是( )A圆柱的轴截面是过母线的截面中面积最大的一个B圆锥的轴截面是所在过顶点的截面中面积最大的一个C圆台的所有平行于底面的截面都是圆面D圆锥所有的轴截面是全等的等腰三角形12下列关系正确的是( )A10,1B10,1C10,1D10,1二、填空题13某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .14已知,若,则= 15已知点A的坐标为(1,0),点B是圆心为C的圆(x1)2+y2=16上一动点,线段AB的垂直平分线交BC与点M,则动点M的轨迹方程为 16集合A=x|1x3,B=x|x1,则AB=17甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为 18已知函数f(x)=恰有两个零点,则a的取值范围是三、解答题19已知数列an满足a1=a,an+1=(nN*)(1)求a2,a3,a4;(2)猜测数列an的通项公式,并用数学归纳法证明202015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x元(7x9)时,一年的销售量为(x10)2万件()求该连锁分店一年的利润L(万元)与每件纪念品的售价x的函数关系式L(x);()当每件纪念品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值21已知函数(1)令,讨论的单调区间;(2)若,正实数满足,证明22(本小题满分12分)一直线被两直线截得线段的中点是点, 当点为时, 求此直线方程.23已知函数f(x)=|x2|(1)解不等式f(x)+f(x+1)2(2)若a0,求证:f(ax)af(x)f(2a) 24已知数列a1,a2,a30,其中a1,a2,a10,是首项为1,公差为1的等差数列;列a10,a11,a20,是公差为d的等差数列;a20,a21,a30,是公差为d2的等差数列(d0)(1)若a20=40,求d;(2)试写出a30关于d的关系式,并求a30的取值范围;(3)续写已知数列,使得a30,a31,a40,是公差为d3的等差数列,依此类推,把已知数列推广为无穷数列提出同(2)类似的问题(2)应当作为特例),并进行研究,你能得到什么样的结论?秀峰区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:当x(0,)时,2x2+x(0,1),0a1,函数f(x)=loga(2x2+x)(a0,a1)由f(x)=logat和t=2x2+x复合而成,0a1时,f(x)=logat在(0,+)上是减函数,所以只要求t=2x2+x0的单调递减区间t=2x2+x0的单调递减区间为(,),f(x)的单调增区间为(,),故选:D【点评】本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件2 【答案】D【解析】解:双曲线(a0,b0)的渐近线方程为y=x联立方程组,解得A(,),B(,),设直线x=与x轴交于点DF为双曲线的右焦点,F(C,0)ABF为钝角三角形,且AF=BF,AFB90,AFD45,即DFDAc,ba,c2a2a2c22a2,e22,e又e1离心率的取值范围是1e故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式3 【答案】D 【解析】考点:1、指数函数与三角函数的性质;2、真值表的应用.4 【答案】C【解析】解:如图,+()故选C5 【答案】B【解析】解:设x1x|f(x)=0=x|f(f(x)=0,f(x1)=f(f(x1)=0,f(0)=0,即f(0)=m=0,故m=0;故f(x)=x2+nx,f(f(x)=(x2+nx)(x2+nx+n)=0,当n=0时,成立;当n0时,0,n不是x2+nx+n=0的根,故=n24n0,故0n4;综上所述,0n+m4;故选B【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题6 【答案】 B【解析】解:若ml,m,则由直线与平面垂直的判定定理,得l,故正确;若ml,m,则l或l,故错误;如图,在正方体ABCDA1B1C1D1中,平面ABB1A1平面ABCD=AB,平面ABB1A1平面BCC1B1=BB1,平面ABCD平面BCC1B1=BC,由AB、BC、BB1两两相交,得:若=l,=m,=n,则lmn不成立,故是假命题;若=l,=m,=n,n,则由=n知,n且n,由n及n,=m,得nm,同理nl,故ml,故命题正确故选:B【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养7 【答案】C【解析】解:Ay=|x|,定义域为R,y=()2=x,定义域为x|x0,定义域不同,不能表示同一函数By=lgx2,的定义域为x|x0,y=2lgx的定义域为x|x0,所以两个函数的定义域不同,所以不能表示同一函数C两个函数的定义域都为x|x0,对应法则相同,能表示同一函数D两个函数的定义域不同,不能表示同一函数故选:C【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数8 【答案】C【解析】解:命题“若x2x=0,则x=1”的逆否命题为“若x1,则x2x0”,正确;若“p或q”是假命题,则p、q均为假命题,p、q均为真命题,“p且q”是真命题,正确;由p:x(x2)0,得0x2,由q:log2x1,得0x2,则p是q的必要不充分条件,错误;若命题p:存在xR,使得2xx2,则p:任意xR,均有2xx2,正确正确的命题有3个故选:C9 【答案】B【解析】由知,解得,故选B.10【答案】C【解析】【分析】将圆C方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,与r比较大小即可得到结果【解答】解:圆C方程化为标准方程得:(x1)2+y2=2,圆心C(1,0),半径r=,1,圆心到直线l的距离d=r,且圆心(1,0)不在直线l上,直线l与圆相交且一定不过圆心故选C11【答案】 B【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah2rh当a=2r时截面面积最大,即轴截面面积最大,故A正确对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为,截面三角形SAB的高为,截面面积S=故截面的最大面积为故B错误对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确故选:B【点评】本题考查了旋转体的结构特征,属于中档题12【答案】B【解析】解:由于10,1,10,1,故选:B【点评】本题考查的知识点是元素与集合关系的判断,其中正确理解集合元素与集合关系的实质,即元素满足集合中元素的性质,是解答本题的关键二、填空题13【答案】12【解析】考点:分层抽样14【答案】【解析】试题分析:因为,所以,又,因此,因为,所以,考点:指对数式运算15【答案】=1【解析】解:由题意得,圆心C(1,0),半径等于4,连接MA,则|MA|=|MB|,|MC|+|MA|=|MC|+|MB|=|BC|=4|AC|=2,故点M的轨迹是:以A、C为焦点的椭圆,2a=4,即有a=2,c=1,b=,椭圆的方程为=1故答案为: =1【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题16【答案】x|1x1 【解析】解:A=x|1x3,B=x|x1,AB=x|1x1,故答案为:x|1x1【点评】本题主要考查集合的基本运算,比较基础17【答案】【解析】【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求另外在确定基本事件时,可以看成是有序的,如与不同;有时也可以看成是无序的,如相同(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用求解较好18【答案】(3,0) 【解析】解:由题意,a0时,x0,y=2x3ax21,y=6x22ax0恒成立,f(x)在(0,+)上至多一个零点;x0,函数y=|x3|+a无零点,a0,不符合题意;3a0时,函数y=|x3|+a在0,+)上有两个零点,函数y=2x3ax21在(,0)上无零点,符合题意;a=3时,函数y=|x3|+a在0,+)上有两个零点,函数y=2x3ax21在(,0)上有零点1,不符合题意;a3时,函数y=|x3|+a在0,+)上有两个零点,函数y=2x3ax21在(,0)上有两个零点,不符合题意;综上所述,a的取值范围是(3,0)故答案为(3,0)三、解答题19【答案】 【解析】解:(1)由an+1=,可得a2=,a3=,a4=(2)猜测an=(nN*)下面用数学归纳法证明:当n=1时,左边=a1=a,右边=a,猜测成立假设当n=k(kN*)时猜测成立,即ak=则当n=k+1时,ak+1=故当n=k+1时,猜测也成立由,可知,对任意nN*都有an=成立20【答案】 【解析】解:()该连锁分店一年的利润L(万元)与售价x的函数关系式为:L(x)=(x7)(x10)2,x7,9,()L(x)=(x10)2+2(x7)(x10)=3(x10)(x8),令L(x)=0,得x=8或x=10(舍去),x7,8,L(x)0,x8,9,L(x)0,L(x)在x7,8上单调递增,在x8,9上单调递减,L(x)max=L(8)=4;答:每件纪念品的售价为8元,该连锁分店一年的利润L最大,最大值为4万元【点评】本题考查了函数的解析式问题,考查函数的单调性、最值问题,是一道中档题21【答案】(1)当时,函数单调递增区间为,无递减区间,当时,函数单调递增区间为,单调递减区间为;(2)证明见解析.【解析】试题解析:(2)当时,由可得,即,令,则,则在区间上单调递减,在区间上单调递增,所以,所以,又,故,由可知1考点:函数导数与不等式【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22【答案】【解析】试题分析:设所求直线与两直线分别交于,根据因为分别在直线上,列出方程组,求解的值,即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 代定住宿合同范本
- 物业设备租赁合同范本
- 小型生意合作合同范本
- 钳工兼职接单合同范本
- 乙方终止设计合同范本
- 建筑砖供货合同范本
- 机械出租合同范本
- 租赁套路合同范本
- 承包农田出租合同范本
- led灯维修合同范本
- 乙二醇加氢精制催化剂:制备工艺、性能优化与应用前景探究
- 危险源辨识、评价及控制培训
- 延缓慢性肾脏病进展临床管理指南(2025年)解读课件
- 土地管理培训课件
- 2025年山西中考历史试卷真题解读及答案讲解课件
- 2025至2030中国科技成果转换行业发展趋势分析与未来投资战略咨询研究报告
- 除颤仪使用讲课件
- 中国PCBA行业发展前景及发展策略与投资风险研究报告2025-2028版
- 教育科技公司团队管理制度
- 特殊人群服务管理制度
- 2025-2030中国磁悬浮离心鼓风机行业市场发展趋势与前景展望战略研究报告
评论
0/150
提交评论