岚县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
岚县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
岚县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
岚县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
岚县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

岚县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知2a=3b=m,ab0且a,ab,b成等差数列,则m=( )ABCD62 已知f(x)在R上是奇函数,且f(x+4)=f(x),当x(0,2)时,f(x)=2x2,则f(7)=( )A2B2C98D983 底面为矩形的四棱锥PABCD的顶点都在球O的表面上,且O在底面ABCD内,PO平面ABCD,当四棱锥PABCD的体积的最大值为18时,球O的表面积为( )A36 B48C60 D724 已知f(x),g(x)都是R上的奇函数,f(x)0的解集为(a2,b),g(x)0的解集为(,),且a2,则f(x)g(x)0的解集为( )A(,a2)(a2,)B(,a2)(a2,)C(,a2)(a2,b)D(b,a2)(a2,)5 已知向量=(1,2),=(x,4),若,则x=( ) A 4 B 4 C 2 D 26 ,则( )A B C D7 已知数列an是等比数列前n项和是Sn,若a2=2,a3=4,则S5等于( )A8B8C11D118 已知函数,函数,其中bR,若函数y=f(x)g(x)恰有4个零点,则b的取值范围是( )ABCD9 下列哪组中的两个函数是相等函数( )A BC D10已知随机变量X服从正态分布N(2,2),P(0X4)=0.8,则P(X4)的值等于( )A0.1B0.2C0.4D0.611双曲线的焦点与椭圆的焦点重合,则m的值等于( )A12B20CD12是平面内不共线的两向量,已知,若三点共线,则的值是( )A1 B2 C-1 D-2二、填空题13当时,函数的图象不在函数的下方,则实数的取值范围是_【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力14设p:f(x)=ex+lnx+2x2+mx+1在(0,+)上单调递增,q:m5,则p是q的条件15若log2(2m3)=0,则elnm1=16已知三棱锥的四个顶点均在球的球面上,和所在的平面互相垂直,则球的表面积为 .17已知,那么 .18若函数y=ln(2x)为奇函数,则a=三、解答题19在平面直角坐标系中,过点的直线与抛物线相交于点、两点,设,(1)求证:为定值;(2)是否存在平行于轴的定直线被以为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长,如果不存在,说明理由20已知数列an的前n项和为Sn,首项为b,若存在非零常数a,使得(1a)Sn=ban+1对一切nN*都成立()求数列an的通项公式;()问是否存在一组非零常数a,b,使得Sn成等比数列?若存在,求出常数a,b的值,若不存在,请说明理由21若函数f(x)=sinxcosx+sin2x(0)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次构成公差为的等差数列()求及m的值;()求函数y=f(x)在x0,2上所有零点的和22已知直角梯形ABCD中,ABCD,过A作AECD,垂足为E,G、F分别为AD、CE的中点,现将ADE沿AE折叠,使得DEEC(1)求证:FG面BCD;(2)设四棱锥DABCE的体积为V,其外接球体积为V,求V:V的值23(本小题满分10分)已知圆过点,.(1)若圆还过点,求圆的方程; (2)若圆心的纵坐标为,求圆的方程.24如图,在四棱锥中,等边所在的平面与正方形所在的平面互相垂直,为的中点,为的中点,且()求证:平面;()求二面角的余弦值;()在线段上是否存在点,使线段与所在平面成角若存在,求出的长,若不存在,请说明理由岚县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:2a=3b=m,a=log2m,b=log3m,a,ab,b成等差数列,2ab=a+b,ab0,+=2,=logm2, =logm3,logm2+logm3=logm6=2,解得m=故选 C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用2 【答案】A【解析】解:因为f(x+4)=f(x),故函数的周期是4所以f(7)=f(3)=f(1),又f(x)在R上是奇函数,所以f(1)=f(1)=212=2,故选A【点评】本题考查函数的奇偶性与周期性3 【答案】【解析】选A.设球O的半径为R,矩形ABCD的长,宽分别为a,b,则有a2b24R22ab,ab2R2,又V四棱锥PABCDS矩形ABCDPOabRR3.R318,则R3,球O的表面积为S4R236,选A.4 【答案】A【解析】解:f(x),g(x)都是R上的奇函数,f(x)0的解集为(a2,b),g(x)0的解集为(,),且a2,f(x)0的解集为(b,a2),g(x)0的解集为(,),则不等式f(x)g(x)0等价为或,即a2x或xa2,故不等式的解集为(,a2)(a2,),故选:A【点评】本题主要考查不等式的求解,根据函数奇偶性的对称性的性质求出f(x)0和g(x)0的解集是解决本题的关键5 【答案】D【解析】: 解:,42x=0,解得x=2故选:D6 【答案】A【解析】试题分析:,由于为增函数,所以.应为为增函数,所以,故.考点:比较大小7 【答案】D【解析】解:设an是等比数列的公比为q,因为a2=2,a3=4,所以q=2,所以a1=1,根据S5=11故选:D【点评】本题主要考查学生运用等比数列的前n项的求和公式的能力,本题较易,属于基础题8 【答案】 D【解析】解:g(x)=f(2x),y=f(x)g(x)=f(x)+f(2x),由f(x)+f(2x)=0,得f(x)+f(2x)=,设h(x)=f(x)+f(2x),若x0,则x0,2x2,则h(x)=f(x)+f(2x)=2+x+x2,若0x2,则2x0,02x2,则h(x)=f(x)+f(2x)=2x+2|2x|=2x+22+x=2,若x2,x2,2x0,则h(x)=f(x)+f(2x)=(x2)2+2|2x|=x25x+8作出函数h(x)的图象如图:当x0时,h(x)=2+x+x2=(x+)2+,当x2时,h(x)=x25x+8=(x)2+,故当=时,h(x)=,有两个交点,当=2时,h(x)=,有无数个交点,由图象知要使函数y=f(x)g(x)恰有4个零点,即h(x)=恰有4个根,则满足2,解得:b(,4),故选:D【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键9 【答案】D111【解析】考点:相等函数的概念.10【答案】A【解析】解:随机变量服从正态分布N(2,o2),正态曲线的对称轴是x=2P(0X4)=0.8,P(X4)=(10.8)=0.1,故选A11【答案】A【解析】解:椭圆的焦点为(4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12故选:A12【答案】B【解析】考点:向量共线定理二、填空题13【答案】【解析】由题意,知当时,不等式,即恒成立令,令,在为递减,在为递增,则14【答案】必要不充分 【解析】解:由题意得f(x)=ex+4x+m,f(x)=ex+lnx+2x2+mx+1在(0,+)内单调递增,f(x)0,即ex+4x+m0在定义域内恒成立,由于+4x4,当且仅当=4x,即x=时等号成立,故对任意的x(0,+),必有ex+4x5mex4x不能得出m5但当m5时,必有ex+4x+m0成立,即f(x)0在x(0,+)上成立p不是q的充分条件,p是q的必要条件,即p是q的必要不充分条件故答案为:必要不充分15【答案】 【解析】解:log2(2m3)=0,2m3=1,解得m=2,elnm1=eln2e=故答案为:【点评】本题考查指数式化简求值,是基础题,解题时要注意对数方程的合理运用16【答案】 【解析】如图所示,为直角,即过的小圆面的圆心为的中点,和所在的平面互相垂直,则球心O在过的圆面上,即的外接圆为球大圆,由等边三角形的重心和外心重合易得球半径为,球的表面积为17【答案】【解析】试题分析:由得, 考点:两角和与差的正切公式18【答案】4 【解析】解:函数y=ln(2x)为奇函数,可得f(x)=f(x),ln(+2x)=ln(2x)ln(+2x)=ln()=ln()可得1+ax24x2=1,解得a=4故答案为:4三、解答题19【答案】(1)证明见解析;(2)弦长为定值,直线方程为.【解析】(2)根据两点间距离公式、点到直线距离公式及勾股定理可求得弦长为 ,进而得时为定值.试题解析:(1)设直线的方程为,由得,因此有为定值111(2)设存在直线:满足条件,则的中点,因此以为直径圆的半径,点到直线的距离,所以所截弦长为当,即时,弦长为定值2,这时直线方程为考点:1、直线与圆、直线与抛物线的位置关系的性质;2、韦达定理、点到直线距离公式及定值问题.20【答案】 【解析】解:()数列an的前n项和为Sn,首项为b,存在非零常数a,使得(1a)Sn=ban+1对一切nN*都成立,由题意得当n=1时,(1a)b=ba2,a2=ab=aa1,当n2时,(1a)Sn=ban+1,(1a)Sn+1=ban+1,两式作差,得:an+2=aan+1,n2,an是首项为b,公比为a的等比数列,()当a=1时,Sn=na1=nb,不合题意,当a1时,若,即,化简,得a=0,与题设矛盾,故不存在非零常数a,b,使得Sn成等比数列【点评】本题考查数列的通项公式的求法,考查使得数列成等比数列的非零常数是否存在的判断与求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用21【答案】 【解析】解:()f(x)=sinxcosx+sin2x=x+(1cos2x)=2x2x=sin(2x),依题意得函数f(x)的周期为且0,2=,=1,则m=1;()由()知f(x)=sin(2x),又x0,2,y=f(x)在x0,2上所有零点的和为【点评】本题主要考查三角函数两倍角公式、辅助角公式、等差数列公差、等差数列求和方法、函数零点基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归转化思想,是中档题22【答案】 【解析】解:(1)证明:取AB中点H,连接GH,FH,GHBD,FHBC,GH面BCD,FH面BCD面FHG面BCD,GF面BCD(2)V=又外接球半径R=V=V:V=【点评】本题考查的知识点是直线与平面平等的判定及棱锥和球的体积,其中根据E点三条棱互相垂直,故棱锥的外接球半径与以AE,CD,DE为棱长的长方体的外接球半径相等,求出外接球半径是解答本题的关键点23【答案】(1);(2).【解析】试题分析:(1)当题设给出圆上三点时,求圆的方程,此时设圆的一般方程,将三点代入,求解圆的方程;(2)AB的垂直平分线过圆心,所以圆心的横坐标为,圆心与圆上任一点连线段为半径,根据圆心与半径求圆的标准方程.试题解析:(1)设圆的方程是,则由已知得,解得故圆的方程为.(2)由圆的对称性可知,圆心的横坐标为,故圆心,故圆的半径,故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论