




已阅读5页,还剩43页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 Basic Studying for Biomechanics 2 (Trigonometry) ( Trigonometric Ratio) (Trigonometric Function) ( Trigonometric Identities) ( Law of Sines) ( Law of Cosines) ? Contents ? vs. / ? degree VS. radian Angles add to 180 The angles of a triangle always add up to 180 44 6868 20 130 30 44 68 + 68 180 20 30 180 + 130 Right triangles We only care about right triangles A right triangle is one in which one of the angles is 90 Heres a right triangle: We call the longest side the hypotenuse We pick one of the other angles-not the right angle We name the other two sides relative to that angle Heres the right angle hypotenuse Heres the angle we are looking at adjacent opposite The Pythagorean Theorem If you square the length of the two shorter sides and add them, you get the square of the length of the hypotenuse adj2 + opp2 = hyp2 32 + 42 = 52, or 9 + 16 = 25 hyp = sqrt(adj2 + opp2) 5 = sqrt(9 + 16) 5-12-13 There are few triangles with integer sides that satisfy the Pythagorean formula 3-4-5 and its multiples (6-8-10, etc.) are the best known 5-12-13 and its multiples form another set 25 + 144 = 169 hyp adj opp Ratios Since a triangle has three sides, there are six ways to divide the lengths of the sides Each of these six ratios has a name (and an abbreviation) Three ratios are most used: sine = sin = opp / hyp cosine = cos = adj / hyp tangent = tan = opp / adj The other three ratios are redundant with these and can be ignored The ratios depend on the shape of the triangle (the angles) but not on the size hypotenuse adjacent opposite hypotenuse adjacent opposite Special Right Triangles 30 30 45 60 45 2 1 1 1 1 Using the ratios If you know the angle marked in red (call it A) and you know the length of the adjacent side, then tan A = opp / adj, so length of opposite side is given by opp = adj * tan A cos A = adj / hyp, so length of hypotenuse is given by hyp = adj / cos A hypotenuse adjacent opposite When solving oblique triangles, simply using trigonometric functions is not enough. You need The Law of Sines The Law of Cosines a2=b2+c2-2bc cosA b2=a2+c2-2ac cosB c2=a2+b2-2ab cosC It is useful to memorize these laws. They can be used to solve any triangle if enough measurements are given. a c b A B C The Six Trigonometric Ratios q q q q q q The Cosecant, Secant, and Cotangent of The Cosecant, Secant, and Cotangent of q q are the Reciprocals of are the Reciprocals of the Sine, Cosine,and Tangent of the Sine, Cosine,and Tangent of q.q. Solving a Problem with the Tangent Ratio 60 53 ft h = ? We know the angle and the We know the angle and the side adjacent to 60. We want to side adjacent to 60. We want to know the opposite side. Use theknow the opposite side. Use the tangent ratio:tangent ratio: 1 2 Why? Trigonometric Functions on a Rectangular Coordinate System x y q q Pick a point on the terminal ray and drop a perpendicular to the x-axis. (The Rectangular Coordinate Model)(The Rectangular Coordinate Model) Trigonometric Functions on a Rectangular Coordinate System x y q q Pick a point on the terminal ray and drop a perpendicular to the x-axis. r y x The adjacent side is x The opposite side is y The hypotenuse is labeled r This is called a REFERENCE TRIANGLE. Trigonometric Values for angles in Quadrants II, III and IV x y Pick a point on the terminal ray and drop a perpendicular to the x-axis. q y x r Trigonometric Values for angles in Quadrants II, III and IV x y Pick a point on the terminal ray and raise a perpendicular to the x-axis. q Trigonometric Values for angles in Quadrants II, III and IV x y Pick a point on the terminal ray and raise a perpendicular to the x-axis. q x r y Important! The is ALWAYS drawn to the x-axis Signs of Trigonometric Functions x y A A ll are positive in QI T Tan ( graph one cycle; then repeat the cycle over the interval. maxx-intminx-intmax 30-303 y = 3 cos x 20x (0, 3) ( , 0) ( , 0) ( , 3) ( , 3) 40 Amplitude The amplitude of y = a sin x (or y = a cos x) is half the distance between the maximum and minimum values of the function. amplitude = |a| If |a| 1, the amplitude stretches the graph vertically. If 0 1, the amplitude shrinks the graph vertically. If a 1, the graph of the function is shrunk horizontally. y x period: 2 period: 4 42 y x y = cos (x) Graph y = f(-x) Use basic trigonometric identities to graph y = f (x) Example 1: Sketch the graph of y = sin (x). Use the identity sin (x) = sin x The graph of y = sin (x) is the graph of y = sin x reflected in the x-axis. Example 2: Sketch the graph of y = cos (x). Use the identity cos (x) = cos x The graph of y = cos (x) is identical to the graph of y = cos x. y x y = sin x y = sin (x) y = cos (x) 43 y x 0 202 0y = 2 sin 3x 0 x Example: y = 2 sin(-3x) Example: Sketch the graph of y = 2 sin (3x). Rewrite the function in the form y = a sin bx with b 0 amplitude: |a| = |2| = 2 Calculate the five key points. (0, 0) ( , 0) ( , 2) ( , -2) ( , 0) Use the identity sin ( x) = sin x: y = 2 sin (3x) = 2 sin 3x period: 22 3 = 44 The graph of y = A sin (Bx C) is obtained by horizontally shifting the graph of y = A sin Bx so that the starting point of the cycle is shifted from x = 0 to x = C/B. The number C/B is called the phase shift. amplitude = | A| period = 2 /B. x y Amplitude: | A| Period: 2/B y = A sin Bx Starting point: x = C/B The Graph of y = Asin(Bx - C) 45 Example Determine the
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年河北雄安新区新建片区学校公开选聘校长及骨干教师13人模拟试卷及完整答案详解一套
- 2025年甘肃省陇南市徽县中医医院医师招聘考前自测高频考点模拟试题及答案详解(有一套)
- 2025年滨州市面向社会公开招聘硕博士高层次人才(168人)考前自测高频考点模拟试题附答案详解
- 2025年七台河市公益性岗位人员招聘模拟试卷及答案详解(考点梳理)
- 涂装项目部培训知识课件
- 涂装课件教学课件
- 2025年春季中国商飞公司校园招聘和年度社会招聘模拟试卷及答案详解(全优)
- 2025河北衡水市冀州区招聘第二批社区工作者考前自测高频考点模拟试题含答案详解
- 涂色课件教学课件
- 2025贵州装备制造职业学院引进高层次人才(博士)、高技能人才招聘9人考前自测高频考点模拟试题附答案详解(典型题)
- 2025浙江工业大学之江学院招聘4人考试参考试题及答案解析
- 2025年山东第一医科大学第三附属医院公开招聘人员(17名)考试参考题库及答案解析
- 新疆博物馆课件介绍
- 2025贵州金控集团特需人才引进4人(第二批次)笔试历年参考题库附带答案详解
- 2026中国电建集团成都勘测设计研究院有限公司招聘笔试备考试题及答案解析
- 江苏省镇江市丹阳市高级中学重点班2025-2026学年高一上学期9月月考语文试题(含答案)(解析版)
- 2025年和平精英考试试题及答案
- 2025-2026学年高二物理上学期第一次月考卷(原卷及解析)【测试范围:第1~3章】(考试版A4)(广东专用)
- 2025年电工考试题库(内附答案)
- 朝鲜族朝鲜语考试题及答案
- GB/T 11182-2025橡胶软管增强用钢丝
评论
0/150
提交评论