




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
南京工程学院备课稿纸第10章 数字信号的最佳接收10.1数字信号的统计特性一个通信系统的优劣很大程序上取决于接收系统的性能。这因影响信息可靠传输的不利因素将直接作用到接收端,对信号接收产生影响。从接收角度,什么情况下接收系统是最好的?这就需要讨论最佳接收问题。最佳接收理论是以接收问题作为研究对象,研究从噪声中如何最好地提取有用信号。为了获得接收码元发生错误的概率,需要研究接收电压的统计特性。本章仅讨论数字信号最佳接收的基本理论。“最佳”不是一个绝对概念,而是在某个“最佳准则”下的相对概念。数字通信中常用的“最佳准则”有:最佳输出信噪比准则,即匹配接收。最佳差错概率准则,即相关接收。带噪声的数字信号的接收,实质上是一个统计接收问题,或者说信号接收过程是一个统计判决过程。从统计学观点可以将数字通信系统用一个统计模型表示。以二进制为例研究接收电压的统计特性:假设:通信系统中的噪声是均值为0的带限高斯白噪声,其单边功率谱密度为n0;并设发送的二进制码元的信号为“0”和“1”,发送概率分别为P(0)和P(1),P(0) + P(1) = 1。设此通信系统的基带截止频率小于fH,则根据低通信号抽样定理,接收噪声电压(先仅讨论噪声电压,噪声主要是低频信号)可以用其抽样值表示,抽样速率要求不小于奈奎斯特速率2fH。设在一个码元持续时间Ts内以2fH的速率抽样,共得到k个抽样值,则有k 2fHTs。每个噪声电压抽样值都是正态分布的随机变量,故其一维概率密度可以写为sn2 为 噪声的方差,即噪声平均功率。噪声的均值为0。设接收噪声电压n(t)的k个抽样值的k维联合概率密度函数为噪声为加性高斯白噪声,且其各抽样值相互独立,在(0,Ts)观察时间的k个噪声样值均为正态分布,则n(t)的统计特性可用多维联合概率密度函数表示为当k 很大时(只有k 很大时统计平均才有意义),代表在观察时间(0,Ts)内的平均功率(k是在Ts内抽样个数)且有:当k很大时:利用上式关系,并注意到: 故联合概率密度: n=(n1,n2,nk)为一个k 维矢量,表示一个码元内噪声的k个抽样值,可以看作是k 维空间中的一个点。f(n)不是时间函数。上式中,当Ts、n0和k给定后,f(n)仅决定于该码元期间内噪声的能量由于噪声的随机性,在每个码元持续时间中的积分不相同,这就使被传输的码元中有一些会发生错误,而另一些则无错。再考虑接收电压r(t)为信号电压s(t)和噪声电压n(t)同时存在情况:r(t) = s(t) + n(t)则在发送码元确定之后,接收电压r(t)的随机性将完全由噪声决定(码元信号本身是确知的),故它仍服从高斯分布。其方差仍为sn2,但是均值变为s(t)。当发送码元“0”的信号波形为s0(t)时,接收电压r(t)的k维联合概率密度函数为r = s + n 表示 k 维矢量,即一个码元内接收电压的k个抽样值。s 则表示一个码元内信号电压的k个抽样值。同理,当发送码元“1“的信号波形为s1(t)时,接收电压r(t)的k维联合概率密度函数为推广到通信系统传输的是M 进制码元:当发送信号为s1,s2,si,sM之一,发送码元是si时,接收电压的k 维联合概率密度函数为10.2 数字信号的最佳接收在数字通信中,最直观和最合理的准则应该是“最小差错概率”,即在实际存在噪声和畸变情况下,期望错误接收的概率越小越好。暂不考虑失真的影响,主要讨论在二进制数字通信系统中如何使噪声引起的错误概率最小。判决准则:设发送码元“1”的概率为P(1),发送码元“0”的概率为P(0)(P(0)和P(1)称为先验概率),则总误码率Pe等于Pe1 = P(0/1) 为发送“1”时,收到“0”的条件概率Pe0 = P(1/0) 为发送“0”时,收到“1”的条件概率接收设备需要对每个接收矢量作判决,判定它是发送码元“0”,还是“1”。对二进制码元,两个联合概率密度函数f0(r)和f1(r)的曲线绘出如图(把多维矢量r 当作1维矢量画出)图中将空间划分为两个区域A0和A1,边界值为r0(具有选择性),判决规则为:接收矢量落在A0区域,判发送码元为“0”;接收矢量落在A1区域,判发送码元为“1”。总误码率可以写为:P(A0/1)表示发送“1”时,矢量r落在区域A0的条件概率;P(A1/0)表示发送“0”时, 矢量r落在区域A1的条件概率。图中将空间划分为两个区域A0和A1,边界值为r0,判决规则为:接收矢量落在A0区域,判发送码元为“0”;接收矢量落在A1区域,判发送码元为“1”。 P(A0/1) 和P(A1/0) 在图中分别由两块阴影(以不同线条方面给出)面积表示。于是:图中将空间划分为两个区域A0和A1,边界值为r0,判决规则为:接收矢量落在A0区域,判发送码元为“0”;接收矢量落在A1区域,判发送码元为“1”。 对r0求导,可求出使Pe最小的判决分界点r0值r0,有 因此,最佳分界点r0的条件是: 当先验概率P(1) = P(0)时,f0(r0) = f1(r0),最佳分界点位于两条曲线交点处。在发送“0”和发送“1”的先验概率相等时,判决准则简化为:按此准则(最大似然准则)判决就可以得到理论上的最佳的误码率。可以推广到多进制信号:设在一个M 进制数字通信系统中,可能的发送码元是s1,s2,si,sM之一,它们的先验概率相等,能量相等。当发送码元是si时,接收电压的k 维联合概率密度函数为以上讨论为数字信号最佳接收的准则,对各种信号都普遍成立。10.3 确知数字信号的最佳接收机经信道到达接收机输入端的信号可分为两大类:确知信号和随机信号。这些信号是从噪声中被检测的对象。确知信号所有参数都是已知的,其取值在任何时间都确定。随机信号(数字)可认为是除相位外其余参数都确知的信号形式,即是唯一随机参数。它的随机性体现于在一个数字信号持续时间(0,T)内为一个值,而在另一持续时间内随机地取另一值。设在一个二进制数字通信系统中,两种接收码元的s0(t)和s1(t)是确知的,持续时间是Ts,且功率相同(双极性波形)。由最佳接收准则,对k维联合概率密度,当发送码元为“0”,电压波形为s0(t)时,接收电压的概率密度为当发送码元为“1”,波形为s1(t)时,接收电压的概率密度为k是Ts间隔内的抽样值个数。由抽样准则,当满足下式时,判发送码元是信号s0(t)而当满足下式时,判发送码元是信号s1(t)可改写成,当满足下式时,判发送码元是信号s0(t)改成小于号,则判发送码元是信号s1(t)。已假定两个码元的能量相同,即展开(*)式,可进一步简化。当下式成立时,判发送码元是信号s0(t)反之,则判为发送码元是s1(t)。W0和W1可以看作是由先验概率决定的加权因子,是确知的。根据给出的最佳判决公式:得到最佳接收机原理方框图若此二进制信号的先验概率相等,则上式又简化为最佳接收机的核心是由相乘和积分构成的相关运算,所以常称这种算法为相关接收法。确知数字信号的最佳接收是一般数字信号最佳接收的特例。M 进制通信系统的最佳接收机结构(先验概率相等) :由最佳接收机得到的误码率是理论上可能达到的最小值。 10.4 确知数字信号最佳接收的误码率最佳接收机是按最佳判决规则设计的,具有最小的错误概率,因而表征了最佳接收机的极限性能。 1. 总误码率由(*)式,在最佳接收机中,满足下式关系判发送码元为s0(t)即当发送码元为s1(t)时,若上式成立,将发生错误判决。将r(t) = s1(t) + n(t)代入上式,得到的就是在发送码元“1”的条件下收到“0”的概率,即条件概率P(0 /1)。上式并不要求两个码元能量相等。可证,这个概率可等效为下面表达式(樊第5版): 同理,发送s0(t)时,判决为收到s1(t)的条件错误概率为因此,总误码率为:2. 先验概率对误码率的影响当P(0) = 0及P(1) = 1时,a = - 及b = ,Pe = 0。这时发送码元只有一种可能性,即是确定的“1”,不会发生错判。同理,若P(0) = 1及P(1) = 0 ,总误码率也为零。当先验概率相等时,P(0)=P(1)=1/2,a=b,上式化简为表明在先验概率相等时,对于给定的噪声功率sx2 ,误码率仅和两种码元波形之差s0(t) s1(t)的能量有关,而与波形本身无关。差别越大,c 值越小,误码率Pe也越小(两码元能量不相等)。当先验概率不等时,计算表明,先验概率不等时的误码率将略小于先验概率相等时的误码率。就误码率而言,先验概率相等是最坏的情况。3. 先验概率相等时误码率的计算通过计算先验概率相等时误码率的具体表达式,可以更好地理解二进制确知信号最佳接收机极限性能对实践的指导。定义码元相关系数r :当s0(t) = s1(t)时(两个码元信号完全相同),r1,为最大值;当s0(t) = -s1(t)时(两个码元信号极性相反,大小相同,如双极性信号),r-1,为最小值。所以r 的取值范围在-1 r +1。当两码元的能量相等,即E0 = E1 (双极性矩形脉冲是一个特例,但并不定是双极性矩形脉冲,也不要求s0(t)=s1(t)。令这个能量为 Eb,则有于是这样误码率公式可用表示:计算得到误码率最终表示式:强调:Eb :码元能量(两码元能量相等):码元相关系数n0 :噪声功率谱密度先验概率相同Pe公式给出了理论上确知信号二进制等能量数字信号误码率的最佳(最小可能)值。实际通信系统中得到的误码率只可能比曲线中的数值差,但绝对不可能超过它。误码率曲线:误码率仅和Eb/n0以及相关系数r有关,与信号波形及噪声功率无直接关系。相关系数越小,误码率也越小;码元能量越大,误码率也越小;噪声功率越小,误码率也越小。码元能量Eb与噪声功率谱密度n0之比,相当于信号、噪声功率比Ps/Pn。这因若系统带宽B等于1/Ts,则能消除码间串扰的奈奎斯特速率传输基带信号时,所需的最小带宽为(1/2Ts) Hz。对于已调信号,若采用的是2PSK或2ASK信号,其占用带宽应当是基带信号带宽的两倍,即为1/(2Ts)=1/Ts (Hz)。所以,n0 .(1/Ts)可视为噪声功率。实际问题中,接收机带通滤波器的带宽大于所需要的最小带宽,因此信噪比小于En/n0,误码率大于最佳结果。见习题10-5。工程上,可把(Eb/n0)当作信号与噪声的功率比看待。相关系数r对于误码率的影响很大。当两种码元的波形相同,相关系数最大,即r = 1时,误码率最大。这时的误码率Pe=1/2。这时两种码元波形没有区别,接收端是在没有根据的乱猜。当两种码元的波形相反,相关系数最小,即r =-1时,误码率最小,最小误码率等于注:2PSK信号的相关系数就等于 -1。当两种码元正交,即相关系数 r 等于0时,误码率等于注:2FSK信号的相关系数就等于或近似等于零。若两种码元中有一种能量等于零,例如2ASK信号,则相当于(*)中=1/2,但(*)是从码元等能量推出的,对2ASK,两种码元的能量不等。小结:二进制确知信号的最佳形式为使r =-1的形式。使r 接近于1的信号形式,其接收性能就越差,以致无法通信。在信噪比性能上(Eb/n0),2ASK信号比2FSK信号差3dB,而2FSK信号又比2PSK信号差3dB。注:10log102=310.5 随相数字信号的最佳接收随相信号是指经过信道传输后码元相位带有随机性的信号。假设:2FSK信号的能量相等、先验概率相等、互不相关;通信系统中存在带限白色高斯噪声;接收信号码元相位的概率密度服从均匀分布。随相信号最佳接收机的误码率为:上述最佳接收机及其误码率也就是2FSK确知信号的非相干接收机和误码率。因为随相信号的相位带有由信道引入的随机变化,所以在接收端不可能采用相干接收方法。换句话说,相干接收只适用于相位确知的信号。对于随相信号而言,非相干接收已经是最佳的接收方法了。10.6 起伏数字信号的最佳接收起伏信号:振幅服从瑞利分布,相位服从均匀分布。假设:通信系统中的噪声是带限白色高斯噪声;信号是互不相关的等能量、等先验概率的2FSK信号。起伏信号最佳误码率为:为接收码元的统计平均能量。误码率曲线:存在衰落时的性能要比无衰落时的性能差。当误码率等于10-2时,有衰落时比无衰落时信噪比大约要增加10dB;当误码率等于10-3时,下降约20dB。存在衰落对信号的影响是很大的。在随参信道中传输信号时,提供抗衰落的措施是非常必要的。10.7 实际接收机和最佳接收机的性能比较两种接收机误码公式比较:普通数字调制系统的误码公式与最佳接收机的分析结果在形式中是一样的,即普通接收系统的r(r=S/N)与最佳接收系统的Eb/n0相对应。公式形式相同,并不意味着接收性能相同。事实上,普通数字调制系统的性能总是比最佳接收系统的性能差(樊第5版)。这是因为,当系统的带宽恰好满足奈奎斯特准则时, Eb/n0就等于信号与噪声功率比,但奈奎斯特带宽是理论上的极限(最小值),实际接收机的带宽达不到这一极限(带宽大于极限值),这使得信噪比r小于Eb/n0 ,从而误码率大于理论极限。10.8 数字信号的匹配滤波接收法匹配滤波器:用线性滤波器对接收信号滤波时,使抽样时刻上输出信号噪声比最大的线性滤波器。理论分析和实践都表明,如果滤波器的输出端能够获得最大信噪比,则我们就能最佳地判断信号的出现,从而提高系统的检测性能。在输出信噪比最大准则下设计一个线性滤波器具有实际意义。针对输入信号的每一个码元,讨论如何获得线性滤波器的H(),使输出获得最大的信噪比。假设条件:接收滤波器的传输函数为H(f),冲激响应为h(t),滤波器输入码元s(t)的持续时间为Ts,信号和噪声之和r(t)为式中,s(t) 为信号码元,n(t) 为 高斯白噪声。设信号码元s(t)的频谱密度函数为S(f),噪声n(t)的双边功率谱密度为Pn(f) = n0/2,n0为噪声单边功率谱密度。输出电压 :滤波器是线性的,根据线性电路叠加定理,当滤波器输入电压r(t)中包括信号和噪声两部分时,滤波器的输出电压y(t)中也包含相应的输出信号so(t)和输出噪声no(t)两部分,可分别计算,即因此输出信号功率就是|s02(t)|。以下求在最大信噪比准则下的最佳线性滤波器的传输特性H(f)。输出噪声功率:这时的输出噪声功率No(平均噪声功率)等于:输出信噪比:在抽样时刻t0上,输出信号瞬时功率与噪声平均功率之比为要求线性滤波器在抽样时刻t0有最大的信号瞬时功率与噪声平均功率比值。需要计算的是在这种最大输出信噪比准则下的最佳线性滤波器的传输特性H()。匹配滤波器的传输特性:利用施瓦兹不等式求 r0的最大值等号成立的条件是(k为任意常数)结论:在白噪声干扰的背景下,按上式设计的线性滤波器,将能在给定时刻t0上获得最大输出信噪比(2E/n0)。 t0是输出信噪比最大的时刻。这种滤波器就是最大信噪比意义下的最佳线性滤波器,由于它的传输特性与信号频谱的复共轭相一致,称此滤波器为匹配滤波器。匹配滤波器的冲激响应函数:可见,匹配滤波器的冲激响应h(t)就是信号s(t)的镜像s(-t),但在时间轴上(向右)平移了t0。t0是输出信噪比最大的时刻。图解: 可见,匹配滤波器的冲激响应h(t)就是信号s(t)的镜像s(-t),但在时间轴上(向右)平移了t0。 实际的匹配滤波器:一个实际的匹配滤波器应该是物理可实现的,其冲激响应必须符合因果关系,在输入冲激脉冲加入前不应该有冲激响应出现,即必须有:即要求满足条件或满足条件这表明,接收滤波器输入端的信号码元s(t)在抽样时刻t0之后必须为零。通常选择在码元末尾抽样,即选t0 = Ts。故匹配滤波器的冲激响应可以写为这时,若匹配滤波器的输入电压为s(t),则输出信号码元的波形为:表明:匹配滤波器输出信号码元波形是输入信号码元波形的自相关函数的k倍。通常取k 1。例:设接收信号码元s(t)的表示式为试求其匹配滤波器的特性和输出信号码元的波形。解:信号波形是一个矩形脉冲,其频谱为令k=1,t0=Ts,可得其匹配滤波器的传输函数为得到此匹配滤波器的冲激响应为h(t)的形状是s(t)的波形以t=Ts/2为轴线反转而来,由于s(t)的波形对称于t=Ts/2,所以反转后,波形不变。求出此匹配滤波器的输出信号波形为证:匹配滤波器接收电路的构成:二进制确知信号,使用匹配滤波器构成的接收电路方框图两个匹配滤波器H1(f),H2(f),分别匹配于两种信号码元s1(t)和s2(t)所对应的频谱S1(f)和S2(f)。在抽样时刻对抽样值进行比较判决。哪个匹配滤波器的输出抽样值更大,就判决那个为输出。若此二进制信号的先验概率相等,则此方框图能给出最小的总误码率。上面的讨论中对于信号波形从未涉及,也就是说最大输出信噪比和信号波形无关,只决定于信号能量E与噪声功率谱密度n0之比,所以这种匹配滤波法对于任何一种数字信号波形都适用,不论是基带数字信号还是已调数字信号。10.9 最佳基带传输系统最佳基带传输系统定义:设基带数字信号传输系统由发送滤波器、信道和接收滤波器组成:其传输函数分别为GT(f)、C(f)和GR(f)。这3个滤波器集中用一个基带总传输函数H(f)表示:H(f)=GT(f)C(f)GR(f)第6章中,为消除码间串扰,要求H(f)必须满足奈奎斯特第一准则,在讨论中忽略了噪声的影响,而只考虑码间串扰。现在分析在H(f)满足消除码间串扰的条件之后,如何设计GT(f)、C(f)和GR(f),以使系统在加性白色高斯噪声条件下误码率最小。将消除了码间串扰并且噪声最小的基带传输系统称为最佳基带传输系统。设计最佳基带传输系统的方法:由于信道的传输特性C(f)往往不可预知,还可能是时变的,所以,在系统设计时,有两种分析方法:1)假设信道具有理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 咨询服务费收取方案范本
- 考研报考咨询宣传方案
- 2025版司法局《调查取证申请书》(空白模板)
- 线上读书活动策划方案公司
- 加油站营销送礼品方案
- 福鼎小型连续墙施工方案
- 围堤清障除杂施工方案
- 建筑转行展览活动方案设计
- 建筑模板废料清除方案设计
- 认知三板斧营销方案
- 叉车标准化操作流程
- 二下科学教学资源开发计划
- 运输企业安全生产费用台账明细
- 抛锚式教学模式课件
- 农产品营销课件
- 锚喷工入场安全教育试卷(含答案)
- DeepSeek+AI智能体医疗健康领域应用方案
- 2025至2030年中国玄武岩行业市场行情动态及发展前景展望报告
- 运输承运商管理制度
- 光伏支架系统培训
- CJ/T 233-2006建筑小区排水用塑料检查井
评论
0/150
提交评论