蒲县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
蒲县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
蒲县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
蒲县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
蒲县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

蒲县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若实数x,y满足,则(x3)2+y2的最小值是( )AB8C20D22 如图,三行三列的方阵中有9个数aij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )ABCD3 已知函数f(x)=lg(1x)的值域为(,1,则函数f(x)的定义域为( )A9,+)B0,+)C(9,1)D9,1)4 设D为ABC所在平面内一点,则( )ABCD5 设P是椭圆+=1上一点,F1、F2是椭圆的焦点,若|PF1|等于4,则|PF2|等于( )A22B21C20D136 设集合,则( )A. B. C. D. 【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题7 若动点分别在直线: 和:上移动,则中点所在直线方程为( )A B C D 8 双曲线E与椭圆C:1有相同焦点,且以E的一个焦点为圆心与双曲线的渐近线相切的圆的面积为,则E的方程为( )A.1 B.1C.y21 D.19 下列说法正确的是( )A命题“若x2=1,则x=1”的否命题为“若x2=1,则x1”B命题“x0R,x+x010”的否定是“xR,x2+x10”C命题“若x=y,则sin x=sin y”的逆否命题为假命题D若“p或q”为真命题,则p,q中至少有一个为真命题10圆锥的高扩大到原来的 倍,底面半径缩短到原来的,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的11在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )ABCD12已知ab0,那么下列不等式成立的是( )AabBa+cb+cC(a)2(b)2D二、填空题13复数z=(i虚数单位)在复平面上对应的点到原点的距离为14如图,在三棱锥中,为等边三角形,则与平面所成角的正弦值为_.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力15如图,在正方体ABCDA1B1C1D1中,P为BD1的中点,则PAC在该正方体各个面上的射影可能是16二项式展开式中,仅有第五项的二项式系数最大,则其常数项为17设全集U=R,集合M=x|2a1x4a,aR,N=x|1x2,若NM,则实数a的取值范围是18若曲线f(x)=aex+bsinx(a,bR)在x=0处与直线y=1相切,则ba=三、解答题19(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号()求第一次或第二次取到3号球的概率;()设为两次取球时取到相同编号的小球的个数,求的分布列与数学期望20已知函数f(x)=(1)求f(f(2);(2)画出函数f(x)的图象,根据图象写出函数的单调增区间并求出函数f(x)在区间(4,0)上的值域21已知Sn为等差数列an的前n项和,且a4=7,S4=16(1)求数列an的通项公式;(2)设bn=,求数列bn的前n项和Tn22(本小题满分12分)111在如图所示的几何体中,是的中点,.(1)已知,求证:平面; (2)已知分别是和的中点,求证: 平面.23为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t0小时为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:()求任选2人中,恰有1人一周课外阅读时间在2,4)(单位:小时)的概率()专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t0,试确定t0的取值范围24设集合A=x|0xm3,B=x|x0或x3,分别求满足下列条件的实数m的取值范围(1)AB=;(2)AB=B蒲县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:画出满足条件的平面区域,如图示:,由图象得P(3,0)到平面区域的最短距离dmin=,(x3)2+y2的最小值是:故选:A【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题2 【答案】 D【解析】古典概型及其概率计算公式【专题】计算题;概率与统计【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;所求的概率为=故选D【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单3 【答案】D【解析】解:函数f(x)=lg(1x)在(,1)上递减,由于函数的值域为(,1,则lg(1x)1,则有01x10,解得,9x1则定义域为9,1),故选D【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题4 【答案】A【解析】解:由已知得到如图由=;故选:A【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为5 【答案】A【解析】解:P是椭圆+=1上一点,F1、F2是椭圆的焦点,|PF1|等于4,|PF2|=213|PF1|=264=22故选:A【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用6 【答案】D【解析】由绝对值的定义及,得,则,所以,故选D.7 【答案】【解析】考点:直线方程8 【答案】【解析】选C.可设双曲线E的方程为1,渐近线方程为yx,即bxay0,由题意得E的一个焦点坐标为(,0),圆的半径为1,焦点到渐近线的距离为1.即1,又a2b26,b1,a,E的方程为y21,故选C.9 【答案】D【解析】解:A命题“若x2=1,则x=1”的否命题为“若x21,则x1”,因此不正确;B命题“x0R,x+x010”的否定是“xR,x2+x10”,因此不正确;C命题“若x=y,则sin x=sin y”正确,其逆否命题为真命题,因此不正确;D命题“p或q”为真命题,则p,q中至少有一个为真命题,正确故选:D10【答案】A【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为,将圆锥的高扩大到原来的倍,底面半径缩短到原来的,则体积为,所以,故选A.考点:圆锥的体积公式.111【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有46=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题12【答案】C【解析】解:ab0,ab0,(a)2(b)2,故选C【点评】本题主要考查不等式的基本性质的应用,属于基础题二、填空题13【答案】 【解析】解:复数z=i(1+i)=1i,复数z=(i虚数单位)在复平面上对应的点(1,1)到原点的距离为:故答案为:【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力14【答案】 【解析】15【答案】 【解析】解:由所给的正方体知,PAC在该正方体上下面上的射影是,PAC在该正方体左右面上的射影是,PAC在该正方体前后面上的射影是故答案为:16【答案】70 【解析】解:根据题意二项式展开式中,仅有第五项的二项式系数最大,则n=8,所以二项式=展开式的通项为Tr+1=(1)rC8rx82r令82r=0得r=4则其常数项为C84=70故答案为70【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别17【答案】,1 【解析】解:全集U=R,集合M=x|2a1x4a,aR,N=x|1x2,NM,2a11 且4a2,解得 2a,故实数a的取值范围是,1,故答案为,118【答案】2 【解析】解:f(x)=aex+bsinx的导数为f(x)=aex+bcosx,可得曲线y=f(x)在x=0处的切线的斜率为k=ae0+bcos0=a+b,由x=0处与直线y=1相切,可得a+b=0,且ae0+bsin0=a=1,解得a=1,b=1,则ba=2故答案为:2三、解答题19【答案】 【解析】解:()事件“第一次或第二次取到3号球的概率”的对立事件为“二次取球都没有取到3号球”,所求概率为(6分)() ,(9分)故的分布列为:012P (10分) (12分)20【答案】 【解析】解:(1)函数f(x)=f(2)=2+2=0,f(f(2)=f(0)=0.3分(2)函数的图象如图:单调增区间为(,1),(0,+)(开区间,闭区间都给分)由图可知:f(4)=2,f(1)=1,函数f(x)在区间(4,0)上的值域(2,112分21【答案】 【解析】解:(1)设等差数列an的公差为d,依题意得(2分)解得:a1=1,d=2an=2n1(2)由得(7分)(11分)(12分)【点评】本题考查等差数列的通项公式的求法及数列的求和,突出考查裂项法求和的应用,属于中档题22【答案】(1)详见解析;(2)详见解析.【解析】试题分析:(1)根据,所以平面就是平面,连接DF,AC是等腰三角形ABC和ACF的公共底边,点D是AC的中点,所以,即证得平面的条件;(2)要证明线面平行,可先证明面面平行,取的中点为,连接,根据中位线证明平面平面,即可证明结论.试题解析:证明:(1),与确定平面.如图,连结. ,是的中点,.同理可得.又,平面,平面,即平面.考点:1.线线,线面垂直关系;2.线线,线面,面面平行关系.【方法点睛】本题考查了立体几何中的平行和垂直关系,属于中档题型,重点说说证明平行的方法,当涉及证明线面平行时,一种方法是证明平面外的线与平面内的线平行,一般是构造平行四边形或是构造三角形的中位线,二种方法是证明面面平行,则线面平行,因为直线与直线外一点确定一个平面,所以所以一般是在某条直线上再找一点,一般是中点,连接构成三角形,证明另两条边与平面平行.23【答案】 【解析】解:()一周课外阅读时间在0,2)的学生人数为0.0102100=2人,一周课外阅读时间在2,4)的学生人数为0.0152100=3人,记一周课外阅读时间在0,2)的学生为A,B,一周课外阅读时间在2,4)的学生为C,D,E,从5人中选取2人,得到基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10个基本事件,记“任选2人中,恰有1人一周课外阅读时间在2,4)”为事件M,其中事件M包含AC,AD,AE,BD,BC,BE,共有6个基本事件,所以P(M)=,即恰有1人一周课外阅读时间在2,4)的概率为()以该校80%的学生都达到的一周课外阅读时间为t0,即一周课外阅读时间未达到t0的学生占20%,由()知课外阅读时间落在0,2)的频率为P1=0.02,课外阅读时间落在2,4)的频率为P2=0.03,课外阅读时间落在4,6)的频率为P3=0.05,课外阅读时间落在6,8)的频率为P1=0.2,因为P1+P2+P30.2,且P1+P2+P3+P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论